In this thesis, we discuss different techniques to bridge the gap between two different approaches to artificial intelligence: the symbolic and the connectionist paradigm. Both approaches have quite contrasting advantages and disadvantages. Research in the area of neural-symbolic integration aims at bridging the gap between them.
Starting from a human readable logic program, we construct connectionist systems, which behave equivalently. Afterwards, those systems can be trained, and later the refined knowledge be extracted.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-25468 |
Date | 15 December 2009 |
Creators | Bader, Sebastian |
Contributors | Technische Universität Dresden, Fakultät Informatik, Prof. Dr. rer. nat. habil Steffen Hölldobler, Prof. Dr. rer. nat. habil Barbara Hammer, Prof. Dr. rer. nat. habil Steffen Hölldobler |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf, application/pdf, application/zip |
Page generated in 0.0026 seconds