Return to search

Imbalance of inhibitory control and excitatory drive associated with cognitive deficits in Alzheimer's disease and aging

La maladie d'Alzheimer (MA) est la maladie neurodégénérative la plus courante et la cause prédominante de la démence sénile (caractérisé par une perte de mémoire et de raisonnement) et du déclin cognitif. Elle résulte d'une dégénérescence des neurones et d'une atrophie sévère qui commence dans les lobes temporal, pariétal et frontal et dans le gyrus cingulaire, puis dans des régions sous-corticales telles que l'hippocampe et le noyau de Meynert. Des observations récentes chez les patients atteints de la MA ont fait état d'une activité cérébrale anormale, commune à d'autres troubles neurologiques avant la perte des neurones. L'hyperexcitabilité neuronale se manifeste tôt dans la MA, ce qui entraîne une hyperactivité corticale et hippocampique et parfois même une activité épileptiforme et des crises chez la souris et l'homme. Cependant, les mécanismes sous-jacents à l'hyperexcitabilité dans le cerveau de la maladie d'Alzheimer restent obscurs. Une hypothèse importante suggère que l'accumulation d'amyloïde-β perturbe la signalisation inhibitrice médiée par le GABA[indice A]. Le vieillissement normal est également associé à un déclin des fonctions cognitives, indépendamment de tout trouble neurodégénératif. Les causes du déclin cognitif associé au vieillissement (DCAV) sont multiples, mais le facteur clé est l'équilibre entre l'excitation et l'inhibition synaptiques. Comme dans le cas de la maladie d'Alzheimer, une hyperactivité neuronale dans l'hippocampe, une région du cerveau impliquée dans la formation et la rétention de la mémoire, ou une absence de désactivation du réseau du mode par défaut (DMN) ont été décrites dans les troubles cognitifs associés au vieillissement. Pourtant, dans le cortex préfrontal, une région du cerveau cruciale pour les fonctions exécutives, une réduction manifeste de la ramification dendritique se produit avec le vieillissement, entraînant une diminution de la transmission synaptique excitatrice et une augmentation de l'entrée inhibitrice. Les études présentées dans cette thèse visent à identifier les altérations de la transmission synaptique conduisant aux déficits cognitifs associés à la MA et à l'ARCD mais visent également à dévoiler les mécanismes potentiels sous-jacents à l'hyperactivité neuronale. Dans la MA, les résultats présentés ici montrent une perte de fonction de l'extrudeur de chlorure neuronal KCC2, responsable du maintien de la robustesse de l'inhibition médiée par le GABA[indice A]. La restauration de KCC2 chez les souris porteuses de mutations liées à la maladie d'Alzheimer a permis d'inverser les déficits de mémoire spatiale et les dysfonctionnements sociaux, reliant la dyshoméostasie des chlorures au déclin cognitif lié à la maladie d'Alzheimer. Avec le vieillissement normal, un sous-ensemble de souris a développé des déficits de mémoire non spatiale, un comportement de type anxieux et un dysfonctionnement social. Dans ce sous-ensemble de souris âgées atteintes de troubles cognitifs, les niveaux de protéines synaptiques inhibitrices clés étaient élevés dans le cortex préfrontal médian (CPM). L'activation optogénétique des neurones GABAergiques du CPM a modifié le comportement des jeunes souris et a reproduit certaines des déficiences cognitives observées chez les vieilles souris souffrant de troubles cognitifs. D'autre part, lorsque la stimulation optogénétique a été utilisée pour générer un modèle d'hyperactivité neuronale soutenue et chronique dans l'hippocampe de jeunes souris, les niveaux de protéines synaptiques excitatrices et inhibitrices ont été réduits, ce qui indique une perturbation générale de la transmission synaptique. Enfin, et surtout, lorsque l'on compare les protéines modifiées lors d'une stimulation optogénétique chronique chez des souris de type sauvage à celles modifiées par des mutations et des pathologies dans les modèles de la maladie d'Alzheimer, seules quelques protéines sont exprimées différemment. Ces résultats suggèrent que l'hyperactivité neuronale pourrait contribuer directement à la perturbation de la transmission synaptique et à la neuropathologie liée à la MA. En résumé, le déclin cognitif peut se produire avec une inhibition à la fois exagérée et diminuée. Ces deux voies opposées, la première étant observée dans le déclin cognitif lié à l'âge et la seconde étant typique de la MA, perturbent de manière unique le fonctionnement normal du cerveau, ce qui entraîne à son tour un déclin cognitif. Une appréciation de ces résultats peut avoir des implications pour les interventions thérapeutiques dans les deux conditions. Dans l'ensemble, les travaux présentés dans cette thèse soulignent non seulement la contribution de l'altération de la transmission inhibitrice dans le développement du déclin cognitif dans la MA et le vieillissement, mais décrivent également l'implication de l'hyperactivité neuronale dans la perturbation des synapses et la neurodégénération. / Alzheimer's disease (AD) is the most common neurodegenerative disorder and the predominant cause of senile dementia (characterized by a loss of memory and reasoning) and cognitive decline. It results from neuron degeneration and severe atrophy initiating from the temporal, parietal and frontal lobe, the cingulate gyrus and the hippocampus following by subcortical regions such as the the nucleus basalis of Meynert. Recent observations have reported an abnormal brain activity in AD patients, common to other neurological disorders prior to the neuron loss. Neuronal hyperexcitability manifests early in AD which leads to cortical and hippocampal hyperactivity and sometimes even epileptiform activity and seizures in mice and humans. However, the mechanisms underlying hyperexcitability in the AD brain remains elusive. A prominent hypothesis suggests that amyloid-β accumulation disrupts GABA[subscript A]-mediated inhibitory signaling. Normal aging is associated also with a decline in cognitive function independently of any neurodegenerative disorder. The causes of aging associated cognitive decline (ASCD) are multifaceted but a key factor is the imbalance between synaptic excitation and inhibition. Similar to AD, neuronal hyperactivity in the hippocampus, a brain region involved in memory formation and retention, or failure of deactivation of the Default Mode Network (DMN) has been described in ASCD. Yet, in the prefrontal cortex, a brain region crucial for executive functions, an overt reduction in the dendritic branching occurs with aging resulting in diminished excitatory synaptic transmission together with an increase in the inhibitory input. The studies presented in this thesis aim to identify alterations in synaptic transmission leading to cognitive deficits associated with AD and ARCD but also aim to unveil potential mechanisms underlying neuronal hyperactivity. In AD, the results presented here show a loss of function of the neuronal chloride extruder KCC2, responsible for maintaining the robustness of GABA[subscript A]-mediated inhibition. Restoring KCC2 in mice carrying AD-linked mutations reversed spatial memory deficits and social dysfunction linking chloride dyshomeostasis with AD-related cognitive decline. With normal aging, a subset of mice developed non-spatial memory impairments, anxiety-like behavior, and social dysfunction. In this subset of cognitively impaired old mice, the levels of key inhibitory synaptic proteins were elevated within the medial prefrontal cortex (mPFC). Activating mPFC GABAergic neurons optogenetically altered the behavior of young mice and mimicked some of the cognitive impairments found in the old, cognitively impaired mice. On the other hand, when optogenetic stimulation was used to generate a model of sustained, chronic neuronal hyperactivity in the hippocampus of young mice, both excitatory and inhibitory synaptic proteins levels were reduced pointing to a general disruption of synaptic transmission. Finally, and more importantly, when we compared the proteins altered upon chronic optogenetic stimulation in wild-type mice to that altered due to mutations and pathology in AD models, only a few proteins where differently expressed. These results suggest that neuronal hyperactivity could contribute directly to the disruption of synaptic transmission and the neuropathology linked to AD. To sum up, cognitive decline can occur with both exaggerated and diminished inhibition. These two opposing paths, with the first seen in age-related cognitive decline, and the second being typical to AD, uniquely disrupt normal brain functioning which in turn leads to cognitive decline. An appreciation of these findings can have implications for therapeutic interventions in the two conditions. Taken together, the work presented in this thesis not only highlights the contribution of altered inhibitory transmission in the development of cognitive decline in AD and aging, but also describes the involvement of neuronal hyperactivity in synapse disruption and neurodegeneration.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/109664
Date13 December 2023
CreatorsKeramidis, Iason
ContributorsDe Koninck, Yves
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xviii, 233 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0032 seconds