Return to search

Newton's method for solving strongly regular generalized equation / Método de Newton para resolver equações generalizadas fortemente regulares

Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-03-22T20:23:25Z
No. of bitstreams: 2
Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-23T11:30:21Z (GMT) No. of bitstreams: 2
Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-23T11:30:21Z (GMT). No. of bitstreams: 2
Tese - Gilson do Nascimento Silva - 2017.pdf: 2015008 bytes, checksum: e0148664ca46221978f71731aeabfa36 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We consider Newton’s method for solving a generalized equation of the form
f(x) + F(x) 3 0,
where f : Ω → Y is continuously differentiable, X and Y are Banach spaces, Ω ⊆ X is open
and F : X ⇒ Y has nonempty closed graph. Assuming strong regularity of the equation
and that the starting point satisfies Kantorovich’s conditions, we show that the method
is quadratically convergent to a solution, which is unique in a suitable neighborhood of
the starting point. In addition, a local convergence analysis of this method is presented.
Moreover, using convex optimization techniques introduced by S. M. Robinson (Numer.
Math., Vol. 19, 1972, pp. 341-347), we prove a robust convergence theorem for inexact
Newton’s method for solving nonlinear inclusion problems in Banach space, i.e., when
F(x) = −C and C is a closed convex set. Our analysis, which is based on Kantorovich’s
majorant technique, enables us to obtain convergence results under Lipschitz, Smale’s and
Nesterov-Nemirovskii’s self-concordant conditions. / N´os consideraremos o m´etodo de Newton para resolver uma equa¸c˜ao generalizada da forma
f(x) + F(x) 3 0,
onde f : Ω → Y ´e continuamente diferenci´avel, X e Y s˜ao espa¸cos de Banach, Ω ⊆ X ´e
aberto e F : X ⇒ Y tem gr´afico fechado n˜ao-vazio. Supondo regularidade forte da equa¸c˜ao
e que o ponto inicial satisfaz as hip´oteses de Kantorovich, mostraremos que o m´etodo ´e
quadraticamente convergente para uma solu¸c˜ao, a qual ´e ´unica em uma vizinhan¸ca do ponto
inicial. Uma an´alise de convergˆencia local deste m´etodo tamb´em ´e apresentada. Al´em disso,
usando t´ecnicas de otimiza¸c˜ao convexa introduzida por S. M. Robinson (Numer. Math., Vol.
19, 1972, pp. 341-347), provaremos um robusto teorema de convergˆencia para o m´etodo de
Newton inexato para resolver problemas de inclus˜ao n˜ao–linear em espa¸cos de Banach, i.e.,
quando F(x) = −C e C ´e um conjunto convexo fechado. Nossa an´alise, a qual ´e baseada
na t´ecnica majorante de Kantorovich, nos permite obter resultados de convergˆencia sob as
condi¸c˜oes Lipschitz, Smale e Nesterov-Nemirovskii auto-concordante.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/6995
Date13 March 2017
CreatorsSilva, Gilson do Nascimento
ContributorsFerreira, Orizon Pereira, Ferreira, Orizon Pereira, Karas, Elizabeth Wegner, Silva, Paulo José da Silva e, Melo, Jefferson Divino Gonçalves de, Gonçalves, Max Leandro Nobre
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Matemática (IME), UFG, Brasil, Instituto de Matemática e Estatística - IME (RG)
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation6600717948137941247, 600, 600, 600, 600, -4268777512335152015, 8398970785179857790, 2075167498588264571

Page generated in 0.0028 seconds