Faire l'estimation d'une copule de valeurs extrêmes bivariée revient à estimer A, sa fonction de Pickands qui lui est associée. Cette fonction A:[0,1] \( \rightarrow \) [0,1] doit satisfaire certaines contraintes :
$$\max\{1-t, t \} \leq A(t) \leq 1, \hspace{3mm} t\in[0,1]$$
$$\text{A est convexe.}$$
Plusieurs estimateurs ont été proposés pour estimer cette fonction A, mais peu respectent ses contraintes imposées. La contribution principale de ce mémoire est d'introduire une technique simple de correction d'estimateurs de la fonction de Pickands de sorte à ce que les estimateurs corrigés respectent les contraintes exigées. La correction proposée utilise une nouvelle propriété du vecteur aléatoire bivarié à valeurs extrêmes, combinée avec l'enveloppe convexe de l'estimateur obtenu pour garantir le respect des contraintes de la fonction A.
La seconde contribution de ce mémoire est de présenter un estimateur bayésien non paramétrique de la fonction de Pickands basé sur la forme introduite par Capéraà et al. (1997). L'estimateur utilise les processus de Dirichlet pour estimer la fonction de répartition d'une transformation du vecteur aléatoire bivarié à valeurs extrêmes.
Des analyses par simulations sont produites sur un ensemble d'estimateurs pour mesurer la performance de la correction et de l'estimateur bayésien proposés, sur un ensemble de 18 distributions de valeurs extrêmes bivariées. La correction améliore l'erreur quadratique moyenne sur l'ensemble des niveaux. L'estimateur bayésien proposé obtient l'erreur quadratique moyenne minimale pour les estimateurs considérés. / Estimating a bivariate extreme-value copula is equivalent to estimating A, its associated Pickands function. This function A: [0,1] \( \rightarrow \) [0,1] must satisfy some constraints :
$$\max\{1-t, t \} \leq A(t) \leq 1, \hspace{3mm} t\in[0,1]$$
$$\text{A is convex.}$$
Many estimators have been proposed to estimate A, but few satisfy the imposed constraints. The main contribution of this thesis is the introduction of a simple correction technique for Pickands function estimators so that the corrected estimators respect the required constraints. The proposed correction uses a new property of the extreme-value random vector and the convex hull of the obtained estimator to guaranty the respect of the Pickands function constraints.
The second contribution of this thesis is to present a nonparametric bayesian estimator of the Pickands function based on the form introduced by Capéraà, Fougères and Genest (1997). The estimator uses Dirichlet processes to estimate the cumulative distribution function of a transformation of the extreme-value bivariate vector.
Analysis by simulations and a comparison with popular estimators provide a measure of performance for the proposed correction and bayesian estimator. The analysis is done on 18 bivariate extreme-value distributions. The correction reduces the mean square error on all distributions. The bayesian estimator has the lowest mean square error of all the considered estimators.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/28238 |
Date | 01 1900 |
Creators | Chalifoux, Kevin |
Contributors | Perron, François |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0023 seconds