Return to search

Deep Neural Networks for dictionary-based 5G channel estimation with no ground truth in mixed SNR scenarios / : Djupa neurala nätverk för ordboksbaserad 5G-kanaluppskattning utan sanning i blandade SNR-scenarier

Channel estimation is a fundamental task for exploiting the advantages of massive Multiple-Input Multiple-Output (MIMO) systems in fifth generation (5G) wireless technology. Channel estimates require solving sparse linear inverse problems that is usually performed with the Least Squares method, which brings low complexity but high mean squared error values. Thus other methods are usually needed to obtain better results, on top of Least Squares. Approximate Message Passing (AMP) is an efficient method for solving sparse linear inverse problems and recently a deep neural network approach to quickly solving such problems has been proposed, called Learned Approximate Message Passing (LAMP) [1], which estimates AMP with a fixed number iterations and learnable parameters. We formalize the channel estimation problem as a dictionary-based sparse linear inverse problem and investigate the applicability of LAMP to the task. We build upon the work of Borgerding et al. [1], providing a new loss function to minimize for our dictionary-based problem, we investigate empirically LAMP’s capabilities in various conditions: varying the dataset size, number of subcarriers, depth of network, and signal-to-noise ratio (SNR). We also propose a new network called Adaptive-LAMP which differs from LAMP for the introduction of a small neural network in each layer for estimating certain parameters instead of learning them. Experiments show that LAMP performs significantly better than AMP in terms of NMSE at low signal-to-noise ratio (SNR) levels and worse at high SNR levels. Interestingly, both proposed networks perform well at discovering active paths in cellular networks, paving the way for new approaches to the Channel Estimation problem. / Kanalbedömning är en grundläggande uppgift för att utnyttja fördelarna med massiva MIMO-system (Multiple-Input Multiple-Output) i femte generationens (5G) trådlösa teknik. Kanalskattningar kräver att man löser glesa linjära inversa problem som vanligtvis utförs med Least Squares-metoden, som ger låg komplexitet men höga medelvärden för det kvadratiska felet. Därför behövs vanligtvis andra metoder för att få bättre resultat, utöver Least Squares. Approximate Message Passing (AMP) är en effektiv metod för att lösa sparsamma linjära inversa problem, och nyligen har det föreslagits ett djupt neuralt nätverk för att snabbt lösa sådana problem, kallat Learned Approximate Message Passing (LAMP) [1], som uppskattar AMP med ett fast antal iterationer och inlärningsbara parametrar. Vi formaliserar kanalskattningsproblemet som ett ordboksbaserat sparse linjärt inversproblem och undersöker LAMP:s tillämplighet på uppgiften. Vi bygger på Borgerding et al. [1], som tillhandahåller en ny förlustfunktion att minimera för vårt ordboksbaserade problem, och vi undersöker empiriskt LAMP:s kapacitet under olika förhållanden: vi varierar datasetets storlek, antalet underbärare, nätverkets djup och signal-brusförhållandet (SNR). Vi föreslår också ett nytt nätverk kallat Adaptive-LAMP som skiljer sig från LAMP genom att det införs ett litet neuralt nätverk i varje lager för att uppskatta vissa parametrar i stället för att lära sig dem. Experiment visar att LAMP presterar betydligt bättre än AMP när det gäller NMSE vid låga signal-brusförhållande (SNR) och sämre vid höga SNR-nivåer. Intressant nog presterar båda de föreslagna nätverken bra när det gäller att upptäcka aktiva vägar i cellulära nätverk, vilket banar väg för nya metoder för kanalskattningsproblemet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-313832
Date January 2022
CreatorsFerrini, Matteo
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:110

Page generated in 0.0029 seconds