• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and implementation of LTE-A and 5G kernel algorithms on SIMD vector processor

Guo, Jiabing January 2015 (has links)
With the wide spread of wireless technology, the time for 4G has arrived, and 5G will appear not so far in the future. However, no matter whether it is 4G or 5G, low latency is a mandatory requirement for baseband processing at base stations for modern cellular standards. In particular, in a future 5G wireless system, with massive MIMO and ultra-dense cells, the demand for low round trip latency between the mobile device and the base station requires a baseband processing delay of 1 ms. This is 10 percentage of today’s LTE-A round trip latency, while at the same time massive MIMO requires large-scale matrix computations. This is especially true for channel estimation and MIMO detection at the base station. Therefore, it is essential to ensure low latency for the user data traffic. In this master’s thesis, LTE/LTE-A uplink physical layer processing is examined, especially the process of channel estimation and MIMO detection. In order to analyze this processing we compare two conventional algorithms’ performance and complexity for channel estimation and MIMO detection. The key aspect which affects the algorithms’ speed is identified as the need for “massive complex matrix inversion”. A parallel coding scheme is proposed to implement a matrix inversion kernel algorithm on a single instruction multiple data stream (SIMD) vector processor. The major contribution of this thesis is implementation and evaluation of a parallel massive complex matrix inversion algorithm. Two aspects have been addressed: the selection of the algorithm to perform this matrix computation and the implementation of a highly parallel version of this algorithm. / Med den breda spridningen av trådlös teknik, har tiden för 4G kommit, och 5G kommer inom en överskådlig framtid. Men oavsett om det gäller 4G eller 5G, låg latens är ett obligatoriskt krav för basbandsbehandling vid basstationer för moderna mobila standarder. I synnerhet i ett framtida trådlöst 5G-system, med massiva MIMO och ultratäta celler, behövs en basbandsbehandling fördröjning på 1 ms för att klara efterfrågan på en låg rundresa latens mellan den mobila enheten och basstationen. Detta är 10 procent av dagens LTE-E rundresa latens, medan massiva MIMO samtidigt kräver storskaliga matrisberäkningar. Detta är särskilt viktigt för kanaluppskattning och MIMO-detektion vid basstationen. Därför är det viktigt att se till att det är låg latens för användardatatrafik. I detta examensarbete, skall LTE/LTE-A upplänk fysiska lagret bearbetning undersökas, och då särskilt processen för kanaluppskattning och MIMO-detektion. För att analysera denna processing jämför vi två konventionella algoritmers prestationer och komplexitet för kanaluppskattning och MIMO-detektion. Den viktigaste aspekten som påverkar algoritmernas hastighet identifieras som behovet av "massiva komplex matrisinversion". Ett parallellt kodningsschema föreslås för att implementera en "matrisinversion kernel-algoritmen" på singelinstruktion multidataström (SIMD) vektorprocessor. Det största bidraget med denna avhandling är genomförande och utvärdering av en parallell massiva komplex matrisinversion kernel-algoritmen. Två aspekter har tagits upp: valet av algoritm för att utföra denna matrisberäkning och implementationen av en högst parallell version av denna algoritm.
2

Deep Neural Networks for dictionary-based 5G channel estimation with no ground truth in mixed SNR scenarios / : Djupa neurala nätverk för ordboksbaserad 5G-kanaluppskattning utan sanning i blandade SNR-scenarier

Ferrini, Matteo January 2022 (has links)
Channel estimation is a fundamental task for exploiting the advantages of massive Multiple-Input Multiple-Output (MIMO) systems in fifth generation (5G) wireless technology. Channel estimates require solving sparse linear inverse problems that is usually performed with the Least Squares method, which brings low complexity but high mean squared error values. Thus other methods are usually needed to obtain better results, on top of Least Squares. Approximate Message Passing (AMP) is an efficient method for solving sparse linear inverse problems and recently a deep neural network approach to quickly solving such problems has been proposed, called Learned Approximate Message Passing (LAMP) [1], which estimates AMP with a fixed number iterations and learnable parameters. We formalize the channel estimation problem as a dictionary-based sparse linear inverse problem and investigate the applicability of LAMP to the task. We build upon the work of Borgerding et al. [1], providing a new loss function to minimize for our dictionary-based problem, we investigate empirically LAMP’s capabilities in various conditions: varying the dataset size, number of subcarriers, depth of network, and signal-to-noise ratio (SNR). We also propose a new network called Adaptive-LAMP which differs from LAMP for the introduction of a small neural network in each layer for estimating certain parameters instead of learning them. Experiments show that LAMP performs significantly better than AMP in terms of NMSE at low signal-to-noise ratio (SNR) levels and worse at high SNR levels. Interestingly, both proposed networks perform well at discovering active paths in cellular networks, paving the way for new approaches to the Channel Estimation problem. / Kanalbedömning är en grundläggande uppgift för att utnyttja fördelarna med massiva MIMO-system (Multiple-Input Multiple-Output) i femte generationens (5G) trådlösa teknik. Kanalskattningar kräver att man löser glesa linjära inversa problem som vanligtvis utförs med Least Squares-metoden, som ger låg komplexitet men höga medelvärden för det kvadratiska felet. Därför behövs vanligtvis andra metoder för att få bättre resultat, utöver Least Squares. Approximate Message Passing (AMP) är en effektiv metod för att lösa sparsamma linjära inversa problem, och nyligen har det föreslagits ett djupt neuralt nätverk för att snabbt lösa sådana problem, kallat Learned Approximate Message Passing (LAMP) [1], som uppskattar AMP med ett fast antal iterationer och inlärningsbara parametrar. Vi formaliserar kanalskattningsproblemet som ett ordboksbaserat sparse linjärt inversproblem och undersöker LAMP:s tillämplighet på uppgiften. Vi bygger på Borgerding et al. [1], som tillhandahåller en ny förlustfunktion att minimera för vårt ordboksbaserade problem, och vi undersöker empiriskt LAMP:s kapacitet under olika förhållanden: vi varierar datasetets storlek, antalet underbärare, nätverkets djup och signal-brusförhållandet (SNR). Vi föreslår också ett nytt nätverk kallat Adaptive-LAMP som skiljer sig från LAMP genom att det införs ett litet neuralt nätverk i varje lager för att uppskatta vissa parametrar i stället för att lära sig dem. Experiment visar att LAMP presterar betydligt bättre än AMP när det gäller NMSE vid låga signal-brusförhållande (SNR) och sämre vid höga SNR-nivåer. Intressant nog presterar båda de föreslagna nätverken bra när det gäller att upptäcka aktiva vägar i cellulära nätverk, vilket banar väg för nya metoder för kanalskattningsproblemet.

Page generated in 0.095 seconds