Der technologische Fortschritt hat in jüngster Zeit zu einer großen Zahl von Zeitreihenmessdaten über komplexe dynamische Systeme wie das Klimasystem, das Gehirn oder das globale ökonomische System geführt. Beispielsweise treten im Klimasystem Prozesse wie El Nino-Southern Oscillation (ENSO) mit dem indischen Monsun auf komplexe Art und Weise durch Telekonnektionen und Rückkopplungen in Wechselwirkung miteinander. Die Analyse der Messdaten zur Rekonstruktion der diesen Wechselwirkungen zugrunde liegenden kausalen Mechanismen ist eine Möglichkeit komplexe Systeme zu verstehen, insbesondere angesichts der unendlich-dimensionalen Komplexität der physikalischen Prozesse. Diese Dissertation verfolgt zwei Hauptfragen: (i) Wie können, ausgehend von multivariaten Zeitreihen, kausale Wechselwirkungen praktisch detektiert werden? (ii) Wie kann die Stärke kausaler Wechselwirkungen zwischen mehreren Prozessen in klar interpretierbarer Weise quantifiziert werden? Im ersten Teil der Arbeit werden die Theorie zur Detektion und Quantifikation nichtlinearer kausaler Wechselwirkungen (weiter-)entwickelt und wichtige Aspekte der Schätztheorie untersucht. Zur Quantifikation kausaler Wechselwirkungen wird ein physikalisch motivierter, informationstheoretischer Ansatz vorgeschlagen, umfangreich numerisch untersucht und durch analytische Resultate untermauert. Im zweiten Teil der Arbeit werden die entwickelten Methoden angewandt, um Hypothesen über kausale Wechselwirkungen in Klimadaten der vergangenen hundert Jahre zu testen und zu generieren. In einem zweiten, eher explorativen Schritt wird ein globaler Luftdruck-Datensatz analysiert, um wichtige treibende Prozesse in der Atmosphäre zu identifizieren. Abschließend wird aufgezeigt, wie die Quantifizierung von Wechselwirkungen Aufschluss über mögliche qualitative Veränderungen in der Klimadynamik (Kipppunkte) geben kann und wie kausal treibende Prozesse zur optimalen Vorhersage von Zeitreihen genutzt werden können. / Today''s scientific world produces a vastly growing and technology-driven abundance of time series data of such complex dynamical systems as the Earth''s climate, the brain, or the global economy. In the climate system multiple processes (e.g., El Nino-Southern Oscillation (ENSO) or the Indian Monsoon) interact in a complex, intertwined way involving teleconnections and feedback loops. Using the data to reconstruct the causal mechanisms underlying these interactions is one way to better understand such complex systems, especially given the infinite-dimensional complexity of the underlying physical equations. In this thesis, two main research questions are addressed: (i) How can general causal interactions be practically detected from multivariate time series? (ii) How can the strength of causal interactions between multiple processes be quantified in a well-interpretable way? In the first part of this thesis, the theory of detecting and quantifying general (linear and nonlinear) causal interactions is developed alongside with the important practical issues of estimation. To quantify causal interactions, a physically motivated, information-theoretic formalism is introduced. The formalism is extensively tested numerically and substantiated by rigorous mathematical results. In the second part of this thesis, the novel methods are applied to test and generate hypotheses on causal interactions in climate time series covering the 20th century up to the present. The results yield insights on an understanding of the Walker circulation and teleconnections of the ENSO system, for example with the Indian Monsoon. Further, in an exploratory way, a global surface pressure dataset is analyzed to identify key processes that drive and govern interactions in the global atmosphere. Finally, it is shown how quantifying interactions can be used to determine possible structural changes, termed tipping points, and as optimal predictors, here applied to the prediction of ENSO.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17669 |
Date | 18 August 2014 |
Creators | Runge, Jakob |
Contributors | Kurths, Jürgen, Kantz, Holger, Wessel, Niels |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.003 seconds