Return to search

Méthodes de surface de réponse basées sur la décomposition de la variance fonctionnelle et application à l'analyse de sensibilité

L'objectif de cette thèse est l'investigation de nouvelles méthodes de surface de réponse afin de réaliser l'analyse de sensibilité de modèles numériques complexes et coûteux en temps de calcul. Pour ce faire, nous nous sommes intéressés aux méthodes basées sur la décomposition ANOVA. Nous avons proposé l'utilisation d'une méthode basée sur les splines de lissage de type ANOVA, alliant procédures d'estimation et de sélection de variables. L'étape de sélection de variable peut devenir très coûteuse en temps de calcul, particulièrement dans le cas d'un grand nombre de paramètre d'entrée. Pour cela nous avons développé un algorithme de seuillage itératif dont l'originalité réside dans sa simplicité d'implémentation et son efficacité. Nous avons ensuite proposé une méthode directe pour estimer les indices de sensibilité. En s'inspirant de cette méthode de surface de réponse, nous avons développé par la suite une méthode adaptée à l'approximation de modèles très irréguliers et discontinus, qui utilise une base d'ondelettes. Ce type de méthode a pour propriété une approche multi-résolution permettant ainsi une meilleure approximation des fonctions à forte irrégularité ou ayant des discontinuités. Enfin, nous nous sommes penchés sur le cas où les sorties du simulateur sont des séries temporelles. Pour ce faire, nous avons développé une méthodologie alliant la méthode de surface de réponse à base de spline de lissage avec une décomposition en ondelettes. Afin d'apprécier l'efficacité des méthodes proposées, des résultats sur des fonctions analytiques ainsi que sur des cas d'ingénierie de réservoir sont présentées.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00614038
Date20 April 2011
CreatorsTouzani, Samir
PublisherUniversité de Grenoble
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds