The present research program is a renewed attempt at explaining the transformation mechanisms. The experimental investigations has focused on a model analysis of transformations which occur in single crystals, with stable orientations, i.e. Goss{110}<001> and brass{110}<112>, the deformation is carried out by channel-die compression to simulate the rolling process of thin sheets. Next, the samples were annealed at temperatures of primary recrystallization. The analysis of crystallographic transformations was conducted on metals from a wide spectrum of stacking fault energy: low - Cu-2%Al, average- Cu and Ni to high Al and Al-1%Mn. At work were analyzed the mechanisms controlling the initial stages of recrystallization. Detailed analysis of disorientation across the recrystallization front clearly showed that the initial grain orientations were not accidental. The axes of disorientation in the relationship across the front of recrystallization were near normal in {111} planes, but only sporadically covered with the <111> direction. The distribution of the recrystallization angle rotation in relation to the preferences presented through the formation of two maxima values near 30 ° and 45-55 °.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00904405 |
Date | 14 June 2013 |
Creators | Miszczyk, Magdalena Maria |
Publisher | Ecole Nationale Supérieure des Mines de Saint-Etienne |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0021 seconds