A tarefa de planejamento de trajetórias de robôs móveis autônomos consiste em determinar objetivos intermediários para que um robô seja capaz de partir de sua localização inicial e alcançar seu objetivo final. Além do planejamento, é importante definir um método de controle da navegação (seguimento da trajetória) do robô para que ele seja capaz de realizar seu trajeto de forma segura. Este projeto propõe uma abordagem híbrida para planejamento exploratório e execução de trajetórias de robôs móveis autônomos em ambientes indoor. Para o planejamento de trajetória, foram investigados algoritmos de busca em espaço de estados, dando ênfase ao uso de algoritmos evolutivos e algoritmos de otimização por colônia de formigas para a descoberta e otimização da trajetória. O controle da navegação é realizado por meio de comportamentos locais reativos, baseado na exploração e uso de mapas topológicos, os quais permitem uma maior flexibilidade em termos de definição da localização da posição do robô móvel e sobre os detalhes do mapa do ambiente (mapas com informações aproximadas e não métricos). Assim, foi proposto e desenvolvido um método robusto capaz de planejar, mapear e explorar um caminho ótimo ou quase ótimo para que o robô possa navegar e alcançar seu objetivo de forma segura, com pouca informação prévia do ambiente ou mesmo sobre sua localização. Além disso, o robô pode reagir a ambientes com alterações dinâmicas em sua estrutura, considerando por exemplo, elementos dinâmicos como portas que possam ser abertas ou fechadas e passagens que são obstruídas. Por fim, foram realizados diversos testes e simulações a fim de validar o método proposto, com a avaliação da qualidade das soluções encontradas e comparação com outras abordagens tradicionais de planejamento de trajetórias (algoritmos A* e D*). / The task of planning path for autonomous mobile robots consists in determine intermediary goals in order to allow a robot be able to leave its initial location and reach its final goal. Besides the planning, it is important to define a method of navigation control (the trajectory following) of the robot for it be able to do its path safely. This project proposes a hybrid approach to path planning and execution of an autonomous mobile robot in indoor environments. For the path planning, search algorithms in state space have been investigated, with emphasis in evolutionary algorithms and ant colony optimization algorithms for the trajectory search and optimization. The navigation control is done by local reactive behaviors, based on topological maps, which allow more flexibility concerning localization definition of position of the mobile robot and about the details of the environment map (maps with approximate information and not metric). Thus, a robust method able to plan an optimum or almost optimum path for the robot to reach its goal safely has been proposed, with little previous information of the environment. Furthermore, the robot can react to dynamic elements in the environment structure, concerning, for example, dynamic elements such as doors that can be opened or closed and ways that are blocked. Finally, several tests and simulations has been carried out to validate the proposed method, with evaluation of the solutions quality and comparison with others traditional approaches for the path planning task (A* and D* algorithms).
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-07022018-144509 |
Date | 17 October 2017 |
Creators | Valéria de Carvalho Santos |
Contributors | Fernando Santos Osório, Cláudio Fabiano Motta Toledo, Heloisa de Arruda Camargo, Ivan Nunes da Silva, Renato Tinós, Denis Fernando Wolf |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0142 seconds