Submitted by Mario BC (mario@bc.ufrpe.br) on 2018-06-29T12:58:59Z
No. of bitstreams: 1
Anthony Jose da Cunha Carneiro Lins.pdf: 4504349 bytes, checksum: 5196fa4bef76b0d9f4a5c0c0d1f77199 (MD5) / Made available in DSpace on 2018-06-29T12:58:59Z (GMT). No. of bitstreams: 1
Anthony Jose da Cunha Carneiro Lins.pdf: 4504349 bytes, checksum: 5196fa4bef76b0d9f4a5c0c0d1f77199 (MD5)
Previous issue date: 2018-02-20 / Aid to the Diagnosis of Cognitive Decline and Alzheimer’s Dementia using Machine Learning based on Cognitive Tests and Genetic Markers A large number of solutions based on computer systems have recently been developed for the classification of cognitive abnormalities in the elderly, so that individuals at high risk of developing neurodegenerative diseases, such as Mild Cognitive Impairment (MCI) and Alzheimer’s Dementia (AD), can be Identified before the onset of disease. Several factors are related to these pathologies, making the diagnostic process a process of high complexity to be solved. This paper
proposes the use of a computer model based on machine learning to perform data regression and pattern classification processes in a real database of elderly individuals. The proposal takes into account data on the gender, age, level of education of the individuals and the scores resulting from cognitive tests (Mental State Mini-Exam, Verbal and Semantic Fluency Test, Clinical Dementia Rating - And Dementia Determination Test - Ascertaining Dementia). Using nonlinear regression models, we can design classifiers to distinguish when aging is being healthy and / or pathological. The primary objective of this research is to use
a regression model to analyze the data set to verify which parameters are most relevant to achieve high accuracy in the diagnosis of neurodegenerative disorders. One of the conclusions indicates that the diagnostic process based only on the results of the cognitive tests, can obtain a high rate of performance, compared to the use of all factors, including socio-cultural data. In this analysis, it is demonstrated that the use of cognitive tests produces better average values. Other analyzes were performed including genetic markers (CYP46A1 and ApoE4), without influencing the results in relation to the accuracy of the analyzes, comparing with the performance of the cognitive tests. Statistical analyzes show
that the best performance in terms of sensitivity is above 97% when the settings have only cognitive tests. The approach presented can be encapsulated as a tool to support the clinical diagnostic process to identify patients with dementia or cognitive decline. / Um grande número de soluções baseadas em sistemas computacionais tem sido desenvolvido recentemente para a classificação de anormalidades cognitivas em idosos, de modo que indivíduos com alto risco de desenvolver doenças neurodegenerativas, como Declínio Cognitivo (DC) e Demência de Alzheimer (DA), podem ser identificados antes da manifestação das doenças. Vários fatores estão relacionados a essas patologias, tornando o processo de diagnóstico de alta complexidade para ser resolvido. Este trabalho propõe utilização de modelo computacional baseado em aprendizagem de máquina para realizar processos de
regressão de dados e classificação de padrões, em uma base de dados reais de indivíduos idosos. A proposta leva em conta dados sobre o gênero, a idade, o nível de instrução dos indivíduos e os escores resultantes dos testes cognitivos (Mini-Exame do Estado Mental, Teste de Fluência Verbal e Semântica, Taxa de Demência Clínica - Clinical Dementia Rating - e Teste de Determinação de Demência - Ascertaining Dementia). Usando modelos de regressão não-linear, que permitem projetar classificadores para distinguir quando o envelhecimento está sendo saudável e/ou patológico. O objetivo primário desta pesquisa é utilizar um modelo de regressão para analisar o conjunto de dados para verificar quais parâmetros são mais relevantes para alcançar alta precisão no diagnóstico de distúrbios neurodegenerativos. Uma das conclusões indica que o processo de diagnóstico baseado apenas nos resultados dos testes cognitivos, podem obter uma alta taxa de desempenho, em comparação a utilização de todos os fatores, incluindo dados sócio-culturais. Nesta análise, demonstra-se que o uso de testes cognitivos produz melhores valores médios. Outras análises foram realizadas incluindo marcadores genéticos (CYP46A1 e ApoE4), sem influenciar os resultados com relação à acurácia das análises, comparando com a performance dos testes cognitivos. Análises estatísticas mostram que o melhor desempenho em termos de sensibilidade é acima de 97% quando as configurações têm apenas testes cognitivos. A abordagem apresentada pode ser encapsulada como uma ferramenta de suporte ao processo de diagnóstico clínico, para identificar pacientes com demência ou declínio cognitivo.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2:tede2/7316 |
Date | 20 February 2018 |
Creators | LINS, Anthony José da Cunha Carneiro |
Contributors | MUNIZ, Maria Tereza Cartaxo, BASTOS FILHO, Carmelo José Albanez, DUTRA, Rosa Amália Fireman, LIMA FILHO, José Luiz de, ARAÚJO, Renato Evangelista de, CARVALHO, Bruno de Melo |
Publisher | Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Biotecnologia (Renorbio), UFRPE, Brasil, Rede Nordeste de Biotecnologia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRPE, instname:Universidade Federal Rural de Pernambuco, instacron:UFRPE |
Rights | info:eu-repo/semantics/openAccess |
Relation | 7794227690756777355, 600, 600, 600, -8104576588452276421, 6209957791494323825 |
Page generated in 0.0024 seconds