Für die schnelle Visualisierung großer Modelle werden sogenannte Echtzeit-Visualisierungsverfahren (real time rendering techniques) eingesetzt. Durch parallele Verarbeitung der Objektdaten auf Multicore-CPUs ist es möglich, die Geschwindigkeit der Darstellung gegenüber GPU-basierten Verfahren weiter zu erhöhen. Insbesondere wurde die Möglichkeit untersucht, das Occlusion-Culling mit Hilfe der CPU durchzuführen. Dabei konnte speziell das Worst-Case-Verhalten verbessert werden.
Mit der Anzahl der Systemkomponenten (z.B. Trackingsystem, Beamer, Rechner) steigt die Trägheit (Latenz) des Gesamtsystems, was eine Echtzeitverarbeitung der Daten deutlich erschwert. Durch Bewegungsvorhersagen, die speziell an das Nutzerverhalten im Rahmen der Anwendung angepasst sind, können auftretende Latenzen kompensiert werden. Die Entwicklungen erfolgten im Kontext einer immersiven Tischtennissimulation. Tischtennis gehört zu den schnellsten Sportarten und repräsentiert somit eine anspruchsvolle Umgebung.
Ein weiterer wichtiger Aspekt bei der Interaktion mit virtuellen Umgebungen ist die Natürlichkeit (Intuitivität) der Benutzeroberfläche. Durch eine möglichst direkte (aus der Realität bekannte) Umsetzung der Benutzerbewegungen in Systembefehle wird eine höchstmögliche Effektivität im Umgang mit dem System erzielt. Im Rahmen einer Designanwendung wurden Interaktionstechniken realisiert, die den alltäglichen Bewegungsabläufen nachempfunden sind.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:18913 |
Date | 01 April 2008 |
Creators | Rusdorf, Stephan |
Contributors | Brunnett, Guido, Jung, Bernhard, Scheuermann, Gerik, Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds