Return to search

Génération et caractérisation de polypropylène branché par catalyse des zirconocènes / Generation and characterisation of Long Chain Branched Polypropylene via zirconocene catalysis

Le polypropylène isotactique est un thermoplastique semi-cristallin de grande consommation présentant de nombreux avantages tels que sa résistance chimique, sa haute température de fusion ou sa rigidité. Néanmoins, sa faible résistance à l'état fondu le rend inadapté à certains procédés de mis en forme. La présence branchements longs au sein de la structure polymérique permet toutefois de renforcer significativement les propriétés d'un polymère dans son état fondu. De ce fait, de nombreuses approches ont été développées afin de générer du polypropylène branché (irradiation, addition de peroxides, greffages etc.). La catalyse de polymérisation par les métallocènes est d'une grande flexibilité dès qu'il s'agit de concevoir des polymères de spécialité. De plus, la rhéologie moléculaire est un outil indispensable à la compréhension des liens entre les propriétés viscoélastiques et la structure macroscopique des polymères (distribution des masses, topologie des branchements, etc.). Grâce à l'alliance de ces deux expertises, les travaux de cette thèse se sont focalisés sur la caractérisation structurelle, thermique et rhéologique de matériaux de type LCB-iPP obtenus par catalyse des zirconocènes {Cp'CR2Flu}ZrCl2. L'objectif premier était de jouer sur la génération des branchements longs en modifiant les conditions opératoires de polymérisation du propylène. En parallèle, un gros travail analytique a été fourni afin de développer des protocoles rhéologiques fiables et adaptés. Suite à ces résultats, nous avons démontré qu'un mécanisme via génération/incorporation de macro-α-oléfines était à l'origine de la génération de LCB-iPP, ce qui a permis la synthèse de polypropylènes hautement branchés et de vérifier l'effet positif des branchements longs sur le comportement viscoélastique des matériaux finaux. / Because of its high melting point, high tensile strength, stiffness and chemical resistance, isotactic polypropylene has one of the leading and fast growing thermoplastic polymers in the world. However, commercial PPs usually have relatively low melt strength, which limits their use in applications such as blow molding. Since long-chain branching (LCB) is known to enhance the melt properties of a polymer, several approaches have been developed to make branched polypropylenes (electron beam irradiation, peroxide curing, grafting etc.). Development of metallocene technology provides unprecedented flexibility in polymer design. Many structural features, including LCB, can now be introduced into polymers. In this work, long chain branched isotactic polypropylene (LCB-iPP) was synthesized using {Cp'CR2Flu}ZrCl2 metallocene catalyst and fully characterized (rheological, spectroscopic and thermal analysis). The branching (macro-α-olefins having predominantly vinyl-terminated chain end) was in situ generated and further incorporated by the same catalyst system to obtain LCB-PP/Linear PP blends. The LCB content was increased using a novel tandem catalysts system for converting propylene alone to isotactic polypropylene with long branches which exhibit enhanced melt properties.

Identiferoai:union.ndltd.org:theses.fr/2013REN1S007
Date25 January 2013
CreatorsBader, Manuëla
ContributorsRennes 1, Université européenne de Bretagne, Carpentier, Jean-François, Kirillov, Evgeny N.
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds