A mecânica celular jaz nas propriedades materiais da membrana plasmática, fundamentalmente uma bicamada fosfolipídica com espessura de dimensões moleculares. Além de forças elásticas, tal material bidimensional também experimenta tensões viscosas devido ao seu comportamento fluido (presumivelmente newtoniano) na direção tangencial. A despeito da notável concordância entre teoria e experimentos biofísicos sobre a geometria de membranas celulares, ainda não se faz presente um método computacional para simulação de sua (real) dinâmica viscosa governada pela lei de Boussinesq-Scriven. Assim sendo, introduzimos uma formulação variacional mista de três campos para escoamentos viscosos de superfícies fechadas curvas. Nela, o fluido circundante é levado em conta considerando-se uma restrição de volume interior, ao passo que uma restrição de área corresponde à inextensibilidade. As incógnitas são a velocidade, o vetor curvatura e a pressão superficial, todas estas interpoladas com elementos finitos lineares contínuos via estabilização baseada na projeção do gradiente de pressão. O método é semi-implícito e requer a solução de apenas um único sistema linear por passo de tempo. Outro ingrediente numérico proposto é uma força que mimetiza a ação de uma pinça óptica, permitindo interação virtual com a membrana, onde a qualidade e o refinamento de malha são mantidos por remalhagem adaptativa automática. Extensivos experimentos numéricos de dinâmica de relaxação são apresentados e comparados com soluções quasi-analíticas. É observada estabilidade temporal condicional com uma restrição de passo de tempo que escala como o quadrado do tamanho de malha. Reportamos a convergência e os limites de estabilidade de nosso método e sua habilidade em predizer corretamente o equilíbrio dinâmico de compridas e finas elongações cilíndricas (tethers) que surgem a partir de pinçamentos membranais. A dependência de forma membranal com respeito a uma velocidade imposta de pinçamento também é discutida, sendo que há um valor limiar de velocidade abaixo do qual um tether não se forma de início. Testes adicionais ilustram a robustez do método e a relevância dos efeitos viscosos membranais quando sob a ação de forças externas. Sem dúvida, ainda há um longo caminho a ser trilhado para o entendimento completo da mecânica celular (há de serem consideradas outras estruturas tais como citoesqueleto, canais iônicos, proteínas transmembranares, etc). O primeiro passo, porém, foi dado: a construção de um esquema numérico variacional capaz de simular a intrigante dinâmica das membranas celulares. / Cell mechanics lies on the material properties of the plasmatic membrane, fundamentally a two-molecule-thick phospholipid bilayer. Other than bending elastic forces, such a two-dimensional interfacial material also experiences viscous stresses due to its (presumably Newtonian) surface fluid tangential behaviour. Despite the remarkable agreement on membrane shapes between theory and biophysical experiments, there is no computational method for simulating its (actual) viscous dynamics governed by the Boussinesq- Scriven law. Accordingly, we introduce a mixed three-field variational formulation for viscous flows of closed curved surfaces. In it, the bulk fluid is taken into account by means of an enclosed-volume constraint, whereas an area constraint stands for the membranes inextensible character. The unknowns are the velocity, vector curvature and surface pressure fields, all of which are interpolated with linear continuous finite elements by means of a pressure-gradient-projection scheme. The method is semi-implicit and it requires the solution of a single linear system per time step. Another proposed ingredient is a numerical force that emulates the action of an optical tweezer, allowing for virtual interaction with the membrane, where mesh quality and refinement are maintained by adaptively remeshing. Extensive relaxation experiments are reported and compared with quasi-analytical solutions. Conditional time stability is observed, with a time step restriction that scales as the square of the mesh size. We discuss both convergence and the stability limits of our method, its ability to correctly predict the dynamical equilibrium of the tether due to tweezing. The dependence of the membrane shape on imposed tweezing velocities is also addressed. Basically, there is a threshold velocity value below which the tethers shape does not arise at first. Further tests illustrate the robustness of the method and show the significance of viscous effects on membranes deformation under external forces. Undoubtedly, there is still a long way to track toward the understanding of celullar mechanics (one still has to account other structures such as cytoskeleton, ion channels, transmembrane proteins, etc). The first step has given, though: the design of a numerically robust variational scheme capable of simulating the engrossing dynamics of fluid cell membranes.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-04042016-114915 |
Date | 04 September 2015 |
Creators | Rodrigues, Diego Samuel |
Contributors | Buscaglia, Gustavo Carlos |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0089 seconds