Return to search

In vivo imaging in the oral cavity by endoscopic optical coherence tomography

The common way to diagnose hard and soft tissue irregularities in the oral cavity is initially the visual inspection by an experienced dentist followed by further medical examinations, such as radiological imaging and/or histopathological investigation. For the diagnosis of oral hard and soft tissues, the detection of early transformations is mostly hampered by poor visual access, low specificity of the diagnosis techniques, and/or limited feasibility of frequent screenings. Therefore, optical noninvasive diagnosis of oral tissue is promising to improve the accuracy of oral screening. Considering this demand, a rigid handheld endoscopic scanner was developed for optical coherence tomography (OCT). The novelty is the usage of a commercially near-infrared endoscope with fitting optics in combination with an established spectral-domain OCT system of our workgroup. By reaching a high spatial resolution, in vivo images of anterior and especially posterior dental and mucosal tissues were obtained from the oral cavity of two volunteers. The convincing image quality of the endoscopic OCT device is particularly obvious for the imaging of different regions of the human soft palate with highly scattering fibrous layer and capillary network within the lamina propria.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:71761
Date01 September 2020
CreatorsWalther, Julia, Schnabel, Christian, Tetschke, Florian, Rosenauer, Tobias, Golde, Jonas, Ebert, Nadja, Baumann, Michael, Hannig, Christian, Koch, Edmund
PublisherSPIE
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation1560-2281, 10.1117/1.JBO.23.7.071207, info:eu-repo/grantAgreement/Europäische Union/Europäischer Sozialfond/Promotionsstipendium/100284305/

Page generated in 0.0264 seconds