This thesis addresses optimal control problems with elasticity for large deformations. A hyperelastic model with a polyconvex energy
density is employed to describe the elastic behavior of a body. The two approaches to derive the nonlinear partial differential equation, a balance of forces and an energy minimization, are compared. Besides the conventional volume and boundary loads, two novel internal loads are presented. Furthermore, curvilinear coordinates and a hierarchical plate model can be incorporated into the formulation of the elastic forward problem.
The forward problem can be solved with Newton\\\'s method, though a globalization technique should be used to avoid divergence of Newton\\\'s method. The repeated solution of the Newton system is done by a CG or MinRes method with a multigrid V-cycle as a preconditioner.
The optimal control problem consists of the displacement (as the state) and a load (as the control). Besides the standard tracking-type objective, alternative objective functionals are presented for problems where a reasonable desired state cannot be provided. Two methods are proposed to solve the optimal control problem: an all-at-once approach by a Lagrange-Newton method and a reduced formulation by a quasi-Newton method with an inverse limited-memory BFGS update.
The algorithms for the solution of the forward problem and the optimal control problem are implemented in the finite-element software FEniCS, with the geometrical multigrid extension FMG. Numerical experiments are performed to demonstrate the mesh independence of the algorithms and both optimization methods.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-150930 |
Date | 22 August 2014 |
Creators | Günnel, Andreas |
Contributors | Technische Universität Chemnitz, Mathematik, Prof. Dr. Roland Herzog, Prof. Dr. Michael Stingl |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf, text/plain, application/zip |
Page generated in 0.0019 seconds