Return to search

Test orales for systems with complex outputs: the case of TTS systems / Oracles de teste para sistemas com saídas complexas - o caso dos sistemas TTS

Software testing is one of the most important Software Engineering processes, being the primary activity to check the conformance between the software requirements and its actual behavior. The automation of software testing activities is essential to certify productivity and effectiveness in such activities. Test automation leads testing activities to be conducted under systematic and accurate criteria, raising the chance of testers to reveal faults or inconsistencies. Test oracles are elementary members in software testing automation, being the mechanism responsible for indicating the correctness of software outputs. In testing environments, test oracles can be effectively implemented based on several sources of information about the Software Under Testing (SUT): software specifications, assertions, formal methods (Finite State Machines (FSM), formal specifications, etc, machine-learning methods, and metamorphic relations. Regardless of the implementation strategy, test oracles are vulnerable to false positive/negative verdicts, configuring what the literature describes as the oracle problem. Therefore, test oracles are a non-trivial and challenging object of studies of the software engineering research area. SUTs outputs in unusual formats make it harder the oracle problem. Audio, images, three-dimensional objects, virtual reality environments, complex statistical compositions, etc, are examples of non-trivial output formats. In the software testing context, SUTs with unusual outputs can be called complex-output systems. In this doctorate dissertation, we propose and evaluate a novel test oracle approach for complex-output systems called feature-based test oracles. The purpose of feature-based test oracles is the appropriation of a processing image technique called Content-Based Image Retrieval (CBIR) to collect information from features extracted from the SUTs outputs to compose test oracles. Given a query image, CBIR combines feature extraction and similarity functions to alleviate the problem of searching for digital images in large databases. In previous research, we have integrated CBIR concepts in a testing framework to support the automation of testing activities in processing image systems and systems with Graphical User Interfaces (GUI). In this doctorate dissertation, we extended that framework and its concepts to general complex-output systems, addressing the feature-based test oracle approach. We use Text-To-Speech (TTS) systems to validate empirically our test oracle technique. Through the results of five empirical analyses, three of them conducted in line with problems of a real-world industry TTS system, show the proposed technique is a valuable instrument to automate testing activities and alleviate practitioners efforts on testing complex output systems. We conclude the proposed test oracles are effective because they systematically evaluate the SUTs sensorial output rather than produce verdicts based on subjective specifications. As future work, we plan to conduct investigations towards the reduction of false positives/negatives and the association of the test oracles with machine learning techniques and metamorphic relations. / Teste de Software é um dos processos mais importantes da Engenharia de Software, sendo a principal atividade para averiguar a conformidade de requisitos de software e suas saídas. A automatização das atividades de teste é essencial para conferir produtividade e efetividade em tais atividades. A automatização faz com que atividades de teste sejam conduzidas sob critérios sistemáticos e precisos, aumentando a chance dos testadores de revelarem falhas ou inconcistências. Oráculos de teste são membros elementares na automatização do teste de software, sendo o mecanismo responsável por indicar a corretude das saídas do softwre. Em ambientes de teste, oráculos de teste podem ser efetivamente implementados com base em diversos fontes de informação sobre o sistema em teste: especificações de software, assertivas, métodos formais (máquinas de estados finitas, especificações formais, etc), métodos de aprendizagem de máquina e relações metamórficas. Independente da estratégia de implementação, oráculos de teste são vulneráveis a veridictos de falsos positivos/negativos, configurando o que é apresentado na literatura como O problema do Oráculo. Então, na área de engenharia de software, oráculos de teste são objetos de estudo não-triviais e desafiadores. O problema de oráculo é potencializado quando as saídas do sistema em teste são dadas em formatos não triviais como, por exemplo, audio, imagens, objetos tridimensionais, ambientes de realidade virtual, composições estatísticas complexas, etc. No contexto do teste de software, sistemas com saídas não triviais podem ser chamados de sistemas com saídas complexas. Esta tese de doutorado propões e avalia uma nova estratégia de oráculo de teste para sistemas com saídas complexas. O propósito de tal estratégia é a apropriação da técnica de processamento de imagem conhecida como CBIR (Recuperação de Imagem Basead em Conteúdo CBIR) para coletar informações de características extratídas do sistema em teste, compondo oráculos de teste. A partir de uma imagem de busca, o CBIR combina extração de características e funções de similaridade para aliviar problemas de busca em grandes based de imagens digitais. Em pesquisas anteriores, conceitos de CBIR foram integrados em um arcabouço de teste para apoiar a automatização de atividades de teste em systemas de processamento de imagens e sistemas com interfaces gráficas. Esta tese de doutorado estende o arcabouço e seus conceitos para sistemas com saídas complexas em geral. Sistemas Texto-Fala (TTS) foram utlizados para validações empíricas. Os resultados de seis análises empíricas, duas delas condizidas em consonância com problemas de um TTS industrial, revelam que a técnica proposta é um valioso instrumento para automatizar atividaes de teste e aliviar esforços de profissionais da indústria ao teste sistemas com saídas complexas. Conclui-se que a efetividade dos oráculos de teste propostos são devido às sistemáticas análises do conteúdo das saídas dos sistemas em teste, em vez da análises de especificações subjetivas. Os trabalhos futuros vislumbrados devem ser conduzidos no intuito de reduzir número de falsos positivos/negativos e a associação dos oráculos de teste com técnicas de aprendizado de máquina e relações metamórficas.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-13092017-085208
Date18 April 2017
CreatorsOliveira, Rafael Alves Paes de
ContributorsDelamaro, Márcio Eduardo, Marques, Fátima de Lourdes dos Santos Nunes
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.003 seconds