A l’heure où les impacts du changement climatique sont devenus indéniables, le développement des énergies décarbonées s’impose. Potentiellement bas coût comparées aux technologies établies, les technologies organiques émergentes offrent une alternative éco-efficiente pour l’exploitation de l’énergie solaire et de l’énergie thermique (< 473 K). Dans le premier chapitre, les avantages et inconvénients des différentes technologies actuellement développées sont discutés. Les dispositifs photovoltaïques, tout comme thermoélectriques, requièrent deux types de matériaux conduisant respectivement les trous (type p) et les électrons (type n). Malgré des avancées remarquables, le développement de semi-conducteurs de type n constitue un levier d’amélioration majeur pour les technologies organiques. Dans ce contexte, ce travail doctoral présente la conception, la synthèse, la caractérisation et la mise en œuvre au sein de dispositifs, de polymères et petites molécules pi-conjugués de type n.Basées sur trois unités électro acceptrices – l’isoindigo (ISI), le naphtalène diimide (NDI) et le benzodifurandione-oligo(p-phénylènevinylène) fluoré (FBDOPV) – la conception et la synthèse de copolymères alternés sont présentées dans le deuxième chapitre. Ces polymères démontrent de hautes affinités électroniques comprises entre 3,5 eV et 4,1 eV. Les études de modélisations DFT et de diffraction de rayons X en couches minces ont permis d’identifier les principaux facteurs structuraux à l’origine des hautes mobilités en électron obtenues en transistor organique à effet de champ allant jusqu’à 0,26 cm2.V-1.s-1.Pour une application thermoélectrique, le dopage moléculaire de ces semi conducteurs organiques est requis et fait l’objet du troisième chapitre. Les conditions nécessaires à la thermo- et photo activation du dopant N-DMBI ont été identifiées. En particulier, la dégradation du dopant activé en présence d’oxygène a été mise en évidence par diffraction de rayons X sur monocristaux. Les polymères et deux petites molécules à base d’ISI et NDI ont été dopés avec succès. Les mécanismes de dopage et les conductivités obtenues sont discutés au cas par cas à l’aide d’expériences spectroscopiques UV Visible-Proche-Infrarouge et Résonance Paramagnétique Electronique. Des conductivités de l’ordre de 10-4 S.cm-1 sont obtenues sans apport énergétique ni avant ni après dépôt. Des conductivités encourageantes de l’ordre de 10-3 S.cm-1 pour une petit molécule à base de NDI et de 10-2 S.cm-1 pour un polymère à base de FBDOPV ont été atteintes. La stabilité et la réversibilité des conductivités des couches minces exposées à l’air ont été examinées et corrélées au niveau LUMO des matériaux. Le contrôle minutieux des conditions de dépôts et de dopage ont permis l’obtention d’un facteur de puissance de l’ordre de 0,3 µW.m 1.K-2 associé à une conductivité thermique de 0,53 W.m-1.K-1. Des figures de mérite d’environ 2.10-4 à 303 K et 5.10-4 à 388 K ont été mesurées, lesquelles représentent les premières valeurs reportées à ce jour pour un semi-conducteur organique dopé n sur un même dispositif.Ces matériaux permettent également le remplacement des dérivés fullerènes en dispositif photovoltaïque comme présenté dans le dernier chapitre. Ils démontrent notamment de forte propriétés d’absorption, étendue jusqu’au domaine proche infrarouge pour l’un des polymères. Un rendement de conversion de 1,3% a été obtenu en cellule solaire à hétérojonction en volume « tout-polymère » avant optimisation. Suivant une conception moléculaire de type donneur-espaceur-accepteur, deux dérivés d’ITIC ont été conçus et caractérisées. La modification de substituants alkyles sur l’espaceur permet d’obtenir des propriétés d’absorptions et d’organisations améliorées comparé à ITIC. De hautes tensions de circuit-ouvert allant jusqu’à 1,10 V et des rendements de 4,2% ont été obtenus avec ces accepteurs non-fullerènes. / At a time when the impacts of climate change have become undeniable, the development of low-carbon energies is crucial. Potentially low cost compared to established technologies, emerging organic technologies offer an eco-efficient alternative for harvesting solar and thermal (< 473 K) energies. In the first chapter, the advantages and drawbacks of the different technologies currently being developed are discussed. Photovoltaic devices, like thermoelectric devices, require two types of materials conducting holes (p type) and electrons (n-type) respectively. Despite remarkable advances, the development of n-type semiconductors represents a major lever for improving organic technologies. In this context, this doctoral work presents the design, synthesis, characterization and device developments of innovative pi-conjugated n-type polymers and small molecules.Based on three electron-accepting units – isoindigo (ISI), naphthalene diimide (NDI) and fluorinated benzodifurandione-oligo(p-phenylenevinylene) (FBDOPV) – the design and synthesis of alternated copolymers are presented in the second chapter. These polymers exhibit high electron affinities ranging from 3.5 eV to 4.1 eV. DFT modelling and thin-film X-ray diffraction studies allowed to identify the main structural aspects leading to electron mobility as high as 0.26 cm2.V 1.s 1 achieved in organic field effect transistors.For thermoelectricity, molecular doping of these organic semiconductors is required. It is the subject of the third chapter. The necessary conditions for thermo- and photo-activation of N DMBI dopant have been identified. In particular, the degradation of the activated dopant in the presence of oxygen has been demonstrated by single crystal X-ray diffraction. Each polymer and two small molecules based on ISI and NDI cores have successfully being doped. The doping mechanisms and conductivities obtained are discussed on a case by case basis using UV-Visible-Near-Infrared and Electron Paramagnetic Resonance spectroscopies. In particular, conductivities in the range of 10-4 S.cm-1 were obtained without external energy supply neither before nor after deposition. Encouraging conductivities in the range of 10-3 S.cm 1 for a small molecule based on NDI and 10-2 S.cm 1 for a polymer based on FBDOPV have been achieved. The stability and reversibility of thin film conductivities when exposed to air were investigated and correlated to the LUMO level of the materials. The thorough control of deposition and doping conditions have afforded to achieve a power factor of about 0.3 µW.m-1.K-2 associated to a thermal conductivity of 0.53 W.m 1.K 1. Figure of merits of approximately 2.10-4 at 303 K and 5.10-4 at 388 K have been obtained, which represent the first values reported to date for an n-doped organic semiconductor measured on a single device.These materials also allow the replacement of fullerene derivatives in photovoltaic devices as presented in the last chapter. In particular, they demonstrate strong absorption properties, extended to the near infrared domain for one of the polymers. A conversion efficiency of 1.3% was obtained in all polymer bulk-heterojunction solar cell before optimization. Following the donor-spacer-acceptor approach, two ITIC derivatives have been designed and characterized. The modification of alkyl substituents on the spacer provides improved absorption and molecular packing properties compared to ITIC. High open-circuit voltages up to 1.10 V and conversion efficiencies of 4.2% have been achieved with these non-fullerene acceptors.
Identifer | oai:union.ndltd.org:theses.fr/2019GREAV027 |
Date | 15 October 2019 |
Creators | Bardagot, Olivier |
Contributors | Grenoble Alpes, Demadrille, Renaud |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds