Lithium-oxygen batteries, also known as Lithium-air batteries, could possibly revolutionize energy storage as we know. By letting lithium react with ambient oxygen gas very large theoretical energy densities are possible. However, there are several challenges remaining to be solved, such as finding suitable materials and understanding the reaction, before the lithium-oxygen battery could be commercialized. The scope of this thesis is focusing on the latter of these challenges. Efficient ion transport between the electrodes is imperative for all batteries that need high power density and energy efficiency. Here the mass transport properties of lithium ions in several different solvents was evaluated. The results showed that the lithium mass transport in electrolytes based on the commonly used lithium-oxygen battery solvent dimethyl sulfoxide (DMSO) was very similar to that of conventional lithium-ion battery electrolytes. However, when room temperature ionic liquids were used the performance severely decreased. Addition of Li salt will effect the oxygen concentration in DMSO-based electrolytes. The choice of lithium salt influenced whether the oxygen concentration increased or decreased. At one molar salt concentration the highest oxygen solubility was 68 % larger than the lowest one. Two model systems was used to study the electrochemical reaction: A quartz crystal microbalance and a cylindrical ultramicroelectrode. The combined usage of these systems showed that during discharge soluble lithium superoxide was produced. A consequence of this was that not all discharge product ended up on the electrode surface. During discharge the cylindrical ultramicroelectrodes displayed signs of passivation that previous theory could not adequately describe. Here the passivation was explained in terms of depletion of active sites. A mechanism was also proposed. The O2 and Li+ concentration dependencies of the discharge process were evaluated by determining the reactant reaction order under kinetic and mass transport control. Under kinetic control the system showed non-integer reaction orders with that of oxygen close to 0.5 suggesting that the current determining step involves adsorption of oxygen. At higher overpotentials, at mass transport control, the reaction order of lithium and oxygen was zero and one, respectively. These results suggest that changes in oxygen concentration will influence the current more than that of lithium. During charging not all of the reaction product was removed. This caused an accumulation when several cycles was examined. The charge reaction pathway involved de-lithiation and bulk oxidation, it also showed an oxygen concentration dependence. / Litiumsyrebatteriet, även känt som litiumluftbatteriet, kan potentiellt revolutionera vårt förhållande till energilagring. Genom att låta litium reagera med syrgas från luften kan teoretiskt höga energitätheter uppnås. Dock så behöver många problem lösas, så som att hitta lämpliga elektrod- och elektrolytmaterial samt att få en ökad förståelse för reaktionsmekanismen, innan litiumsyrebatteriet kan kommersialiseras. Den här avhandlingen behandlar de sistnämnda av dessa problem. För att ett batteri ska kunna leverera hög effekttäthet och energieffektivitet krävs en effektiv jontransport mellan elektroderna. Här utvärderades masstransporten hos flera olika elektrolyter. Resultatet visade att masstransporten av litium i en litiumsyrebatterielektrolyt (baserad på dimetylsulfoxid (DMSO)) är likvärdig med en konventionell litiumjonbatterielektrolyt. När elektrolyter baserade på jonvätskor användes uppvisades väldigt stora energiförluster. När litiumsalt tillsattes påverkades lösligheten av syre i DMSO-baserade elektrolyter. Vilken sorts litiumsalt som användes påverkade om lösligheten av syre ökade eller minskade. Vid en saltkoncentration på en molar var den högsta syrelösligheten 68 \% större än den lägsta. Två olika modellsystem används för att studera den elektrokemiska reaktionen: En elektrokemisk kvartskristallmikrovåg och en cylindrisk ultramikroelektrod. Vid kombinerad användning av dessa system påvisades att löslig litiumsuperoxid bildades vid urladdningen. Följden av detta blev att endast delar av urladdningsprodukten hamnade på elektroden. Vid urladdning visade ultramikroelektroderna tecken på passivering som inte kunde beskrivas av tidigare teori. Här föreslås att passiveringen uppstår på grund av en blockering av de aktiva säten där reaktionen fortskrider. För denna process föreslås även en detaljerad mekanism. Urladdningsprocessens koncentrationsberoende utvärderades genom att bestämma reaktionsordningen för syre och litium under kinetisk- och masstransport kontroll. Under kinetisk kontroll fanns inga heltalsreaktionsordningar, för syre var reaktionsordningen nära 0.5 vilket föreslår att det reaktionssteg som bestämmer strömstorleken innefattar en adsorption av syre. Vid högre överpotentialer, då systemet var under masstransportkontroll, var reaktionsordningarna för litium och syre noll respektive ett. Detta föreslår att ändringar i syrekoncentration påverkar strömmen betydligt mer än vad det gör för litium. Under uppladdning kunde inte all reaktionsprodukt avlägsnas från elektroden. Detta ledde till en ackumulation då flera cykler studerades. Uppladdningens delsteg innefattade en delitiering följt av en oxidation av reaktionsproduktbulken. Denna process uppvisade även ett syrekoncentrationsberoende. / <p>QC 20171114</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-217533 |
Date | January 2017 |
Creators | Lindberg, Jonas |
Publisher | KTH, Tillämpad elektrokemi, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CHE-Report, 1654-1081 |
Page generated in 0.0025 seconds