Return to search

Étude par pharmacologie quantitative du système dopaminergique des ganglions de la base pour l’optimisation de la pharmacothérapie. Modèle unificateur pour la maladie de Parkinson et le TDAH

La dopamine est un neurotransmetteur important dans le fonctionnement des ganglions
de la base, région du cerveau impliquée dans la fonction motrice et l’apprentissage. Un
dérèglement de la dynamique de la dopamine peut être à l’origine de différentes pathologies
neurologiques, telles que la maladie de Parkinson et le trouble de déficit de l’attention avec
ou sans hyperactivité (TDAH). La lévodopa, un précurseur de la dopamine, est utilisée pour
réduire les symptômes associés à la maladie de Parkinson, sans action directe sur ses causes.
La lévodopa est très efficace au début de la maladie, mais la durée de son effet ainsi que son
index thérapeutique diminuent avec la progression de la dénervation induite par la maladie.
Ces changements compliquent considérablement l’optimisation des régimes posologiques. Le
méthylphénidate, quant à lui, est administré pour réduire les symptômes du TDAH et agit
entre autres en bloquant la recapture de la dopamine. Bien que les données confirment une
certaine implication de la dopamine dans le TDAH, son étiologie exacte demeure inconnue.
Peu d’études ont cerné l’effet de la lévodopa sur le système dopaminergique des ganglions
de la base et son évolution avec la progression de la maladie. Aussi, bien que le TDAH
ait suscité beaucoup d’intérêt, rares sont les études quantitatives de nature mécanistiques
sur le sujet. L’approche de modélisation mathématique utilisée dans cette thèse s’inscrit
dans un effort global visant l’optimisation de la lévodopa et du méthylphénidate, appuyé
par l’élucidation des mécanismes impliqués dans la maladie de Parkinson et dans le TDAH.
En adoptant une approche de pharmacologie quantitative des systèmes (QSP), nous avons
développé un modèle intégratif du système dopaminergique des ganglions de la base, avec
l’objectif d’élucider les mécanismes impliqués, d’évaluer l’impact de la dopamine chez dessujets souffrant de Parkinson ou de TDAH, et recevant ou non un traitement, et enfin de guider
objectivement l’exercice d’optimisation des régimes posologiques. À notre connaissance,
c’est le premier cadre unificateur de modélisation qui s’adresse à ces deux pathologies.
Le modèle développé dans cette thèse est composé de trois sous-modèles : le premier décrit
la pharmacocinétique du médicament concerné, soit la lévodopa ou le méthylphénidate ;
le deuxième exprime mathématiquement les différents mécanismes impliqués dans la dynamique
de la dopamine ; le troisième représente la complexité de la neurotransmission dans les
ganglions de la base. Avec des adaptations appropriées, nous avons appliqué ce même modèle
au contexte de la maladie de Parkinson et au TDAH, ainsi qu’à leurs thérapies respectives.
Pour représenter physiologiquement la maladie de Parkinson, nous avons intégré dans le
modèle l’évolution de la perte neuronale ainsi que les différents mécanismes de compensation
qui en résultent. La fréquence de tapotement des doigts est utilisée comme mesure clinique
de la bradykinésie, définie comme le ralentissement des mouvements chez les patients parkinsoniens.
Le modèle développé se base sur les connaissances actuelles de la pathophysiologie
et pharmacologie du Parkinson, assurant ainsi sa validité en comparaison à des observations
expérimentales et cliniques. Ensuite, à l’aide de ce modèle, les relations non-linéaires entre
la concentration plasmatique de lévodopa, la concentration en dopamine dans le cerveau et
la réponse à une tâche motrice sont étudiées. Le rétrécissement de l’index thérapeutique de
la lévodopa au cours de la progression de la maladie dû à ces non-linéarités est investigué.
Enfin, pour assurer l’aspect translationnel de notre approche, nous avons développé une application
web à laquelle ce modèle a été intégré. Cette application sert de preuve de concept
à un outil facilitant l’optimisation et l’individualisation des régimes posologiques.
Pour l’étude du TDAH, nous avons adapté le modèle du système dopaminergique en
y intégrant la libération tonique et phasique de la dopamine, cette dernière se produisant
durant une tâche d’apprentissage par renforcement. Des individus virtuels ont été créés avec
et sans déséquilibre du ratio tonique/phasique de la dopamine. En simulant une tâche de
réponse à des stimuli dans un contexte de déséquilibre de la dopamine, le modèle nous a
permis d’observer des symptômes similiaires à ceux de patients réels souffrant de TDAH.
Finalement, la réponse au méthylphénidate résultant de l’inhibition de la recapture de la
dopamine, à travers différents scénarios d’apprentissage a aussi été étudiée. Le développement
d’une métrique nous a permis de différencier les répondants des non-répondants, et
ainsi de mettre en évidence l’implication possible d’un apprentissage excessif chez les nonrépondants.
Une meilleure compréhension de la réponse au méthylphénidate permettrait
d’éviter la surmédication chez les non-répondants et d’aider les cliniciens dans leur pratique.
Malgré la complexité du système dopaminergique et des traitements associés, cette thèse
est un pas en avant dans la compréhension des mécanismes sous-jacents et de leur implication
dans la thérapie. Ces avancées ont été réalisées en adoptant une approche de pharmacologie
quantitative des systèmes, associée à une modélisation neurocomputationnelle du
domaine du génie électrique, et complétée par un aspect de transfert au chevet du patient.
Ce n’est qu’en transcendant ainsi les frontières disciplinaires qu’une visée aussi globale et
intégrative est possible, afin de faire face aux défis multidimensionnels du système de la santé. / Dopamine is an important neurotransmitter of the basal ganglia, a region of the brain
involved in motor function and learning. Disruption of dopamine dynamics can cause various
neurological conditions, such as Parkinson’s disease and attention deficit hyperactivity disorder
(ADHD). Levodopa, a dopamine precursor, is used to reduce the symptoms associated
with Parkinson’s disease, without directly alleviating its causes. Levodopa is very effective
in the early stages of the disease, but its effect duration along with its therapeutic index
decrease with disease-induced denervation. These modifications further challenge determination
of optimal dosing regimens of levodopa. In the case of ADHD, methylphenidate is
administered to reduce its symptoms by, among other things, blocking dopamine recapture.
Although evidence supports involvement of dopamine in ADHD, its exact etiology remains
unknown.
Few studies have investigated the effect of levodopa on the basal ganglia dopaminergic
system and how it evolves with disease progression. Also, although ADHD has received a
lot of interest, few quantitative studies of a mechanistic nature have been conducted on the
subject. The mathematical modeling approach used in this thesis is part of an overall effort
to optimize levodopa and methylphenidate, supported by the elucidation of the mechanisms
involved in Parkinson’s disease and ADHD. Using a quantitative systems pharmacology
(QSP) approach, we have developed an integrative model of the basal ganglia dopaminergic
system, with the objective of elucidating the mechanisms involved, assessing the impact of
dopamine in subjects with Parkinson’s or ADHD, with and without treatment, and objectively
guiding the dosing regimens optimization. To the best of our knowledge, this is the first
unifying modeling framework that addresses at the same time these two pathologies and
their therapies.
The model developed in this thesis includes three sub-models: the first one describes
the drug pharmacokinetics, either levodopa or methylphenidate; the second one translates
mathematically the different mechanisms involved in the dopamine dynamics; the third one is
a computational representation of the complexity of neurotransmission in the basal ganglia.
With appropriate adaptations, we have applied this same model to the context of Parkinson’s
disease and ADHD, as well as to their respective pharmacotherapies.
In order to physiologically represent Parkinson’s disease, we have integrated the denervation
process in the model as well as the resulting compensation mechanisms. The finger
tapping frequency is used as a clinical endpoint of bradykinesia, defined as the slowing of
movements. The developed model is based on up-to-date knowledge of the pathophysiology
and pharmacology of Parkinson’s disease, thus ensuring its validity in comparison with experimental
and clinical observations. Using this model, the non-linear relationships between
plasma levodopa concentration, dopamine concentration in the brain and response to a motor
task were studied. The narrowing of levodopa therapeutic index during the progression of
the disease due to these non-linearities was investigated. Finally, to ensure the translational
aspect of our approach, we developed a web application in which this model was integrated.
This application serves as a proof of concept for a tool aimed to facilitate the optimization
and individualization of dosing regimens.
For the study of ADHD, we adapted the developed model by integrating tonic and phasic
dopamine release, the latter occurring during a reinforcement learning task. Virtual individuals
were created with and without dopamine imbalance in the tonic/phasic ratio. By
simulating a stimulus-response task, we observe ADHD-like symptoms among virtual patients
with dopamine imbalance. Finally, the response to methylphenidate resulting from
dopamine recapture inhibition, through different learning scenarios, was also studied. The
development of a metric allowed us to differentiate responders from non-responders, and thus
to highlight the possible implication of excessive learning in non-responders. A better understanding
of methylphenidate response would help avoid overmedication in non-responders
and assist clinicians in their practice.
Despite the complexity of the dopaminergic system and its associated therapies, this
thesis is a step forward in understanding the underlying mechanisms and their involvement
in pharmacotherapy. These advances were achieved by adopting a quantitative systems
pharmacology approach, combined with neurocomputational modeling borrowed from the
electrical engineering field, and complemented by a translational bedside aspect. It is only
by transcending disciplinary boundaries and adopting such an integrative approach that
this ultimate goal of having a real impact on the multifaceted health system is possible.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/26980
Date04 1900
CreatorsVéronneau-Veilleux, Florence
ContributorsNekka, Fahima
Source SetsUniversité de Montréal
Languagefra
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0041 seconds