Return to search

Etude et caractérisations de membranes nanocomposites hybrides pour pile à combustible du type PEMFC / Study and characterizations of nanocomposite hybrid membranes for PEMFC fuel cell

La membrane conductrice protonique constitue un rouage essentiel du fonctionnement des piles à combustible PEMFC. Les travaux de recherche présentés dans ce document consistent à développer une membrane non perfluorée basée sur une technologie nanocomposite hybride susceptible d’être produite à faible coût. Cette membrane est composée d’une matrice poly(VDF-co-HFP) dans laquelle sont dispersées des nanoparticules de silice fonctionnalisée par de l’acide poly(styrène sulfonique) (PSSA). Ce travail a porté sur l’étude de la mise en oeuvre de la membrane afin d’obtenir une membrane homogène et dense avec des caractéristiques physico-chimiques et électrochimiques intéressantes. Les performances en pile après rodage à 60 °C sont extrêmement satisfaisantes avec un gain en densité de puissance de 40 % à 0,7 V par rapport au Nafion® NRE211. Les études de durabilité de la membrane ont mis en évidence un phénomène d’élution de la silice fonctionnalisée ayant pour conséquence un fort déclin de tension. Différentes stratégies de modification de la membrane ont été proposées pour améliorer la stabilité de la membrane. Les plus intéressantes consistent à modifier la morphologie de la matrice (grades de PVDF plus rigides ou réticulation du poly(VDF-co-HFP) par irradiation) pour mieux confiner les charges ou à greffer la silice fonctionnalisée sur la matrice. Cette dernière stratégie conduit à une diminution par trois du gonflement et par 2,5 de la vitesse de déclin à 80°C. / The proton conductive membrane is an essential part of the operation of PEMFC. This document presents the development of a non-perfluorinated membrane based on a hybrid nanocomposite technology likely to be produced at low cost. This membrane is composed of a poly(VDF-co-HFP) matrix in which are dispersed poly(styrene sulphonic acid) (PSSA) functionalized silica nanoparticles. This work focuses on the study of the implementation of the membrane to obtain a homogeneous and dense membrane with good physicochemical and electrochemical characteristics. Fuel cell performances after running at 60 °C are extremely satisfactory with a gain, compared to Nafion NRE211, of 40% for the power density at 0.7 V. However, the durability studies showed an elution phenomenon of the functionalized silica particles which results in a high voltage decline. Different membrane modification strategies have been proposed to improve the stability of the membrane. The most interesting involve modifying the morphology of the matrix (more rigid grades of PVDF or poly(VDF-co-HFP) crosslinking by radiation) to better confine the particles or grafting functionalized silica to the matrix. This last strategy leads to a threefold decrease of the swelling and 2.5 factor of the decay rate at 80 °C.

Identiferoai:union.ndltd.org:theses.fr/2017TOUR4001
Date26 January 2017
CreatorsCellier, Julien
ContributorsTours, Buvat, Pierrick, Bigarre, Janick
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds