Return to search

Marches aléatoires en milieux aléatoires et phénomènes de ralentissement / Random walks in random environments and slowdown phenomena

Les marches aléatoires en milieux aléatoires constituent un modèle permettant de décrire des phénomènes de diffusion en milieux inhomogènes, possédant des propriétés de régularité à grande échelle. La thèse comportent 6 chapitres. Les trois premiers sont introductifs : le chapitre 1 est une courte introduction générale, le chapitre 2 donne une présentation des modèles considérés par la suite et le chapitre 3 un bref aperçu des résultats obtenus. Les preuves sont renvoyées aux chapitres 4, 5 et 6. Le contenu du chapitre 4 porte sur les théorèmes limites pour une marche aléatoire avec biais sur un arbre de Galton-Watson avec des feuilles dans un régime transient sous-balistique. Le chapitre 5 porte sur le comportement de la vitesse d'une marche aléatoire avec biais sur un amas de percolation quand le paramètre de percolation se rapproche de 1. Un développement asymptotique de la vitesse en fonction du paramètre de percolation est obtenu. On en déduit que la vitesse est croissante en $p=1$. Finalement le chapitre 6 porte sur des estimées de déviations modérées pour une marche aléatoire en milieu aléatoire unidimensionnel. / Random walks in random environments is a suitable model to describe diffusions in inhomogeneous media that have regularity properties on a macroscopic scale. The three first chapters are introductive : chapter 1 is a short general introduction, chapter 2 presents the models considered afterwards and chapter 3 is a brief overview of the results obtained. The proofs are postponed to the chapters4, 5 and 6.The content of chapter 4sheds light on limit theorems for a biased random walk on a Galton-Watson tree with leaves in the transient and sub-ballistic regime. Next, chapter 5 deals with the behaviour of the speed of a biased random walk on a percolation cluster as the percolation parameter goes to 1. An expansion of the speed in function of the percolation parameter is obtained. It can be deduced from this that the speed is increasing in $p=1$. Finally, chapter 6 tackles the problem of moderate deviations for random walks in random environments in dimension $1$.

Identiferoai:union.ndltd.org:theses.fr/2009LYO10078
Date03 June 2009
CreatorsFribergh, Alexander
ContributorsLyon 1, Sabot, Christophe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds