This report includes a thesis in an advanced level and includes 30 credits in the subject product development. The work consist of a case study performed at Gnutti Carlo AB in Kungsör. The work has been carried out by a student from Mälardalen University spring term in 2016.In the manufacturing process in cell 1, there is a bottleneck problem due to various factors, which disrupt production that resulted in a loss of time. Gnutti Carlo AB Company has started a project where the goal is to let the manufacturing process work at full capacity, which it does not do today.The goal of the project work is to develop a solution that increases the capacity of the manufacturing process by raising the OEE value from 78,33% to more than 95%. The project is carried out by following the product development process as presented by Ulrich & Eppinger's book. Various tools were used in this process to help the author obtain the final solution.A case study was conducted to solve the research question; how can the capacity of the manufacturing process be increased where the bottleneck problems arise? Based on the guidelines that have been assigned by the supervisor, various interviews and own investigations, a basis for the formulation of the problem was formed.The main problem was divided into four problems with the aim to be resolved through the development and evaluation of ideas in every area of concern to then combine the various ideas to several concepts, which in turn were examined and evaluated in order to select the concept that became a useful solution.Based on the main issue, a concept has been developed which in theory answers how the capacity of the manufacturing process was increased. Through eliminating the time losses in the process, the capacity in the manufacturing process increased by 98.5% of a continuous OEE, which is both higher than the target of OEE 95% and the present 78.33%. The solution consists of a 3D Camera that analyses all the details in the pallet while it is moved by a cylinder. These are mounted in a frame that is made with square pipes.To ensure that the final solution could cope the stresses of the construction it was tested by examining the sustainability of the solution. FEM analysis was performed in SolidWorks that showed where the highest stresses are, to ensure that it can cope with the forces that are weighing on the solution. The components that were investigated got safety factors 64 and 114.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-33039 |
Date | January 2016 |
Creators | Mohammed, Yehia |
Publisher | Mälardalens högskola, Akademin för innovation, design och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds