La première partie de ce travail est consacrée à l'évaluation de l'efficacité photocatalytique de plusieurs semiconducteurs commerciaux. La comparaison est basée sur la détermination de leurs propriétés physiques : diamètre des particules, taille des cristallites, structure cristallographique, propriétés électroniques, composition chimique ainsi que capacité d'adsorption. L'efficacité photocatalytique est testée sur le phénol, un polluant modèle. Alors que ZnO présente une activité photocatalytique légèrement supérieure à celle des différents TiO2 étudiés, c'est pour le TiO2 P25 que la plus faible résistivité a été observée. C'est donc au sein de ce dernier que la circulation électronique est la meilleure. L'existence de différentes formes cristallographiques pour le TiO2 est démontrée être également un autre paramètre fondamental gouvernant la réactivité. Si la partition anatase/rutile (80/20%) est donc importante, le fait que le TiO2-P25 soit formé d'un seul cristallite le semble tout autant, car c'est tout le grain qui peut être considéré comme actif.Une seconde partie est dédiée à l'étude de la dégradation photocatalytique d'un colorant, le Vert Cibacron (RG12) utilisé dans l'industrie textile. Le travail est réalisé en suspension aqueuse en présence de dioxyde de titane TiO2-P25. La décoloration de la suspension est effective après 90min de traitement et s'accompagne d'une minéralisation partielle de 60% pour une gamme de concentration initiale en RG12 entre 10-40 mgL-1. Pour déterminer le mécanisme général de la photocatalyse, des investigations thermodynamiques et cinétiques ont été menées sur l'adsorption du colorant sur TiO2-P25. La chimisorption s'est avérée être le processus spontané endothermique majoritaire se déroulant à la surface du photocatalyseur. La cinétique d'adsorption suit globalement une loi de pseudo-ordre deux accompagnée d'un mécanisme de diffusion intraparticulaire observé aux fortes concentrations (80-120 mgL-1) mettant en avant les mésopores du matériau. Un modèle faisant intervenir une adsorption compétitive des espèces à la surface du photocatalyseur a été élaboré. Les molécules de colorant, de sous-produits de dégradation, les molécules d'eau et ions hydroxydes, ainsi que le dioxygène présent en solution et à la surface du TiO2 sont supposés entrer en compétition vis à vis des mêmes sites d'adsorption. Il est alors observé que l'inverse de la constante de dégradation photocatalytique du colorant dépend d'un polynôme du second degré de la concentration initiale du colorant de départ.Afin de contrecarrer le problème récurrent de la filtration des suspensions aqueuses de TiO2, la fixation de TiO2 par la méthode PMTP sur des plaques de verre a été étudiée. La caractérisation des dépôts par MEB et DRX a permis de montrer que ceux-ci étaient homogènes. Les performances du TiO2 supporté ont été comparées au procédé photocatalytique classique en suspension aqueuse sur le colorant Vert Cibacron dans un réacteur à recirculation de 500 mL dont les conditions optimales de fonctionnement ont été déterminées. Le modèle précédent de compétition d'adsorption des espèces à la surface du photocatalyseur, s'est montré adapté à décrire les résultats expérimentaux comparativement au modèle de Langmuir-Hinshelwood.Enfin, le couplage photocatalyse/sonolyse a été examiné pour la dégradation du vert Cibacron. Le dosage des espèces actives générées par chaque technique a été réalisé. Une synergie est apparue lors du couplage de la photocatalyse sous irradiation solaire en présence d'ultrasons 500 kHz.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00781668 |
Date | 25 June 2012 |
Creators | Hadj salah, Nadjet |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds