Cette thèse contribue à l'identification des mécanismes de dégradation qui ont lieu durant les phases de démarrage et d'arrêt des Piles à Combustible à Membrane Échangeuse de Proton. Dans un premier temps, des démarrages et arrêts individuels sont étudiés au moyen d'une cellule équipée de collecteurs de courants segmentés. Les courants internes qui sont produits durant ces opérations peuvent ainsi être mesurés. La mesure du dioxide de carbone dans les gaz d'échappement de la cathode révèle qu'une partie des courants internes correspond à de l'oxydation du carbone. Une autre part provient des réactions (réversibles ou non) d'oxydoréduction impliquant du platine. L'hétérogénéité des dégradations subies par la pile entre l'entrée et la sortie de la cathode est mise en évidence lors de protocoles de vieillissement répétant des démarrages et arrêts. Des analyses post-mortem révèlent un autre niveau d'hétérogénéité, qui concerne également le carbone, entre les dents et les canaux. De ces expériences, il ressort également que les dégradations sont plus importantes lorsque les gaz sont injectés à faible vitesse dans le compartiment anodique mais aussi quand de l'air est utilisé à la place de l'azote pour arrêter la pile. L'influence des caractéristiques de la MEA sur l'intensité des dégradations est aussi étudié. Un chargement en platine élevé à l'anode ou des électrodes avec des surfaces de carbone actif élevées accélèrent la chute des performances électriques. Au contraire accroitre le chargement en platine à la cathode limite ces pertes. Enfin, des simulations numériques des phases de démarrage complètent les résultats expérimentaux. L'oxydation réversible du platine est notamment identifiée comme étant responsable d'une part importante des courants internes / This works contributes to the identification of the various degradation mechanisms in Polymer Electrolyte Membrane Fuel Cell during start-up and shut-down operations. Single start-ups and shut-downs are first analysed using a cell with segmented cathode current collectors. Thus, internal currents which occur during these operations can be measured. Carbon dioxide measured in the cathode exhaust gas reveals that they result partially from carbon oxidation. Another contribution is the reversible or non reversible redox reactions involving platinum. The heterogeneity of the non reversible platinum oxidation between the inlet and outlet of the cathode is evidenced by the in-situ monitoring of the Electrochemical Surface Area during long-term start-up and shut-down aging protocols. Post-mortem analysis reveals another level of heterogeneity, which concerns also carbon oxidation, between land and channel. From these experiments, it appears also that degradations are more important when gases are injected with a low velocity in the anode compartment and when air is used instead of nitrogen to flush the anode compartment during shut-down. The influence of the MEA characteristics on the extent of the degradation observed during these aging protocols is also analyzed. High platinum loading in the anode and high surface carbon electrodes accelerate the drop of the electrical performances, while increasing the cathode platinum loading limits their decay. Finally, numerical simulations of start-ups complete the experimental results. Reversible platinum oxidation was found to be one of the main contribution to the internal currents
Identifer | oai:union.ndltd.org:theses.fr/2013LORR0117 |
Date | 28 June 2013 |
Creators | Lamibrac, Adrien |
Contributors | Université de Lorraine, Lottin, Olivier, Maranzana, Gaël |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds