With the rapid migration of physical layer design of radio towards software, it becomes necessary to select or develop the platform and tools that help in achieving rapid design and development along with flexibility and reconfigurability. The availability of field programmable gate arrays (FPGAs) has promoted the concept of reconfigurable hardware for software defined radio (SDR). It enables the designer to create high speed radios with flexibility, low latency and high throughput. Generally, the traditional method of designing FPGA based radios limits productivity. Productivity can be improved using Model based design (MBD) tools. These tools encourage a modular way of developing waveforms for radios. The tools based on MBD have been the focus of recent research exploring the concept of the platform independent model (PIM) and portability across platforms by the platform specific model (PSM). The thesis presented here explores the tools based on MBD to achieve prototyping for wireless standards like IEEE 802.11a and IEEE 802.16e on reconfigurable hardware. It also describes the interfacing of the universal software radio peripheral (USRP2), acting as a radio frequency (RF) front end, with an additional FPGA board for baseband processing. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/34667 |
Date | 08 September 2010 |
Creators | Moola , Sabares S. |
Contributors | Electrical and Computer Engineering, Reed, Jeffrey H., Newman, Timothy R., Dietrich, Carl B. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | MoolaSreedaranath_Sabares_T_2010.pdf |
Page generated in 0.002 seconds