La présente thèse porte sur les fonctions propres du laplacien et d’opérateurs de Schrödinger en dimension quelconque. Plus précisément, pour une variété (M,g) de dimension d et une fonction V : M → R, on considère les solutions de l’équation suivante:
(∆_g + V ) f_λ = λ f_λ .
On appelle l’opérateur ∆_g + V un opérateur de Schrödinger et V le potentiel. Le cas le plus simple et le plus étudié est le laplacien (on pose V ≡ 0 sur M ). Si M est compacte et sans bord, alors il existe une suite 0 = λ_0 < λ_1 ≤ λ_2 -> +∞ qui forme le spectre de ∆_g et une suite de fonctions propres f_n qui satisfont à ∆_g f_n = λ_n f_n . Cette propriété est aussi
respectée pour beaucoup de potentiels et de variétés. Premièrement, nous avons étudié le nombre de domaines nodaux des fonctions propres quand la valeur propre tend vers l’infini. Les domaines nodaux d’une fonction f sur M sont les composantes connexes de l’ensemble M \f^{−1} (0). Ils nous permettent de mesurer le caractère oscillatoire de f en comptant le nombre de fois où f change de signe. L’objectif principal de la thèse était de généraliser le théorème de Pleijel [52] sur le nombre de domaines nodaux des fonctions propres du laplacien à d’autre opérateurs de Schrödinger. Dans l’article [2], nous avons montré que la borne du théorème de Pleijel s’applique aussi à l’oscillateur harmonique quantique dans R^d . De plus, nous avons remarqué que cette borne pouvait être améliorée en fonction de la forme quadratique qui définit le potentiel.
Ensuite, dans l’article [3], nous avons généralisé le résultat obtenu dans [2] à une large classe de potentiels radiaux, incluant des potentiels qui tendent vers zéro à l’infini ou ayant une singularité à l’origine. Cela inclut le potentiel de Coulomb, qui modélise un atome d’hydrogène isolé dans l’espace. Pour ces potentiels, nous considérons les valeurs propres
strictement inférieures au spectre essentiel.
Nous avons aussi étudié les points critiques des fonctions propres du laplacien. Jusqu’à tout récemment, il y avait seulement une borne inférieure sur le nombre de points critiques pour certaines variétés [36], mais il n’y avait pas de borne supérieure connue. En 2019, Buhovsky, Logunov et Sodin ont construit une métrique sur T^2 et une suite de fonctions propres du laplacien qui ont toutes une infinité de points critiques. Dans l’article [4], nous utilisons une nouvelle méthode pour construire des métriques sur T^2 et S^2 et des fonctions propres pour ces métriques qui ont une infinité de points critiques. De plus, nous montrons que ces métriques peuvent être arbitrairement proches de la métrique plate sur T^2 et de la métrique standard sur S^2 . Ces métriques donnent aussi des contre-exemples à la conjecture de Courant-Hermann sur le nombre de domaines nodaux des combinaisons linéaires de fonctions propres du laplacien. / The theme of this thesis is the study of the eigenfunctions of the Laplacian and Schrödinger operators. Let (M,g) be a manifold and V : M → R. We are looking at solutions of the following equation:
(∆_g + V ) f_λ = λ f_λ .
The operator ∆_g + V is called a Schrödinger operator and V is called the potential. The simplest and most studied example is the Laplacian (we put V ≡ 0 on M ). If M is compact and without boundary, then there exists a sequence 0 = λ_0 < λ_1 ≤ λ_2 -> +∞ that makes the spectrum of ∆_g and a sequence of eigenfunctions f_n such that ∆_g f_n = λ_n f_n . This decomposition also holds for various potentials and manifolds. Firstly, we studied the nodal domains of the eigenfunctions as the eigenvalues tend to infinity. The nodal domains of a function f on M are the connected components of M \f^{−1} (0).
They can be used to understand the oscillatory character of eigenfunctions by counting the number of times that f changes sign. The principal goal of this thesis was to generalize Pleijel’s nodal domain theorem [52] to other Schrödinger operators.
In the article [2], we showed that the upper bound in Pleijel’s theorem also holds for the quantum harmonic oscillator. Furthermore, this bound can be improved depending on the quadratic form that defines the potential.
Afterwards, in the article [3], we generalized the result from [2] to a large class of radial potentials, including ones that tend to zero at infinity. These include the Coulomb potential, which modelizes the hydrogen atom in free space.
We also studied the number of critical points of Laplace eigenfunctions. Until recently, there were only known lower bounds for certain manifolds [36], but no upper bound was known. In 2019, Buhovsky, Logunov and Sodin [18] constructed a metric on T^2 and a sequence of Laplace eigenfunctions which all have infinitely many critical points. In our article [4], we used a different method to create metrics on T^2 and S^2 and Laplace eigenfunctions for these metrics that have infinitely many critical points. Furthermore, these metrics can be taken arbitrarily close to the flat metric on T^2 and the round metric on S^2. These constructions also provide strong counterexamples to the Courant-Hermann conjecture on the number of nodal domains of linear combinations of Laplace eigenfunctions.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/24804 |
Date | 06 1900 |
Creators | Charron, Philippe |
Contributors | Polterovich, Iosif |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Page generated in 0.003 seconds