Les cellules solaires nanostructurées ont été développées pour réduire le coût du photovoltaïque et le rendre compétitif aux autres sources d’énergies. Dans ce but deux cellules solaires ont été étudié durant la thèse: la cellule « eta » (Extremely Thin Absorber) et la cellule hybride à polymères. Dans un premier temps, des couches 2D et nanofils de ZnO ont été réalisés par voie électrochimique sur des substrats verre/TCO (oxyde transparent et conducteur). Il est montré que la température du bain, la densité de charge et la concentration de l’électrolyte support (KCl) infleuncent la morphologie, composition, cristallisation et propriétés optiques des couches. Les films déposés à 0,1 M KCl et à T ≥ 50°C, présente de bonnes propriétés physico-chimiques. La couche 2D est ensuite utilisée pour la croissance des nanofils de ZnO et leurs dimensions sont ajustées avec la moprhologie et l’épaisseur de cette couche. L’électrolyte support et la densité de charge permettent également de contrôler les dimensions des nanofils. Dans un deuxième temps, les nanofils de ZnO ont été photo-sensibilisés par deux types d’absorbeurs : CuInS2 (CIS) et Cu2ZnSnS4 (CZTS). Ils ont été réalisés par différentes méthodes : SILAR (Successive Ion Layer Adsorption and Reaction), électrodépôt et dépôt de nanoparticules pré-synthétisées (pour CIS). Les films préparés par voie SILAR sont très uniformes autour des nanofils. Tandis que ceux réalisés par électrodépôt sont moins homogènes mais de très bonnes qualités cristallines. Grâce à la fonctionnalisation des nanofils, une couche de nanoparticules de CuInS2 très uniforme est déposée. Les cellules « eta » réalisées avec ces structures cœur/coquille montrent un effet photovoltaïque. Les films de ZnO électrodéposés ont été intégrés dans des cellules solaires hybrides à polymères sur substrats verres et plastiques. Ces cellules ont montré de bons rendements et une haute stabilité. / Nanostructured solar cells have been proposed as a solution for photovoltaic cost reduction and to rival the cost of grid-powered electricity. Regarding this challenge, two kinds of solar cells have been studied within the PhD thesis: the Extremely Thin Absorber Solar cells (eta) and the polymer hybrid solar cell. First, we are reporting on the electrochemical deposition of ZnO 2D layers and nanowires on glass substrates covered with TCO (Transparent Conducting Oxide). It is shown that the bath temperature and the supporting electrolyte concentration (KCl) play an important role on the ZnO layer morphology, composition, crystallization and optical properties. The film deposited from 0.1 M KCl and T ≥ 50°C exhibit very good optical and structural properties. These 2D layers are used for consequent ZnO nanowires electrodeposition and their dimensions could be tailored by the seed layer morphology and thickness. The supporting electrolyte concentration and the passed charge density could be additionally used to control their dimensions. Then, the ZnO nanowires have been photosensitized with two absorbers: CuInS2 (CIS) and Cu2ZnSnS4 (CZTS). These materials are prepared by: Successive Ion Layer Adsorption and Reaction (SILAR), electrodeposition and nanoparticules deposition (for CIS). The SILAR films are very uniform around the nanowires. The layers prepared by electrodeposition are less uniform but exhibit very good structural properties. Uniform thin film of CuInS2 nanoparticules are deposited onto functionalized ZnO nanowires. The eta solar cells fabricated with these core/shell nanostructures have shown a photovoltaic effect. The ZnO thin films have been integrated in hybrid solar cells on flexible and rigid substrates. These cells show good power conversion efficiency and a high stability.
Identifer | oai:union.ndltd.org:theses.fr/2012GRENI016 |
Date | 10 September 2012 |
Creators | Sanchez, Sylvia |
Contributors | Grenoble, Ivanova, Valentina |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds