Dans ce travail, nous construisons et étudions des familles de polynômes orthogonaux généralisés définis dans l'espace des matrices hermitiennes qui sont associées à une famille de polynômes orthogonaux sur R. Nous considérons plusieurs normalisations pour ces polynômes, et obtenons des formules classiques à partir des formules correspondantes pour des polynômes définis sur R. Nous construisons également des semi-groupes d'opérateurs associés aux polynômes orthogonaux généralisés, et donnons l'expression du générateur infinitésimal de ce semi-groupe ; nous prouvons que ce semi-groupe est markovien dans les cas classiques. En ce qui concerne les expansions d-dimensionnelles de Jacobi nous étudions les notions d'intégrale fractionnelle (potentiel de Riesz), de potentiel de Bessel et de dérivées fractionnelles. Nous donnons une nouvelle décomposition de l'espace L2 associé à la mesure de Jacobi d-dimensionnelle, et obtenons un analogue du théorème du multiplicateur de Meyer dans ce cadre. Nous étudions aussi les espaces de Jacobi-Sobolev.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00468206 |
Date | 03 July 2009 |
Creators | Balderrama, Cristina |
Publisher | Université d'Angers |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds