This thesis comprises modeling and simulation of an AC-DC converter (Battery charger). An AC-DC converter may cause a high frequency distortion in the electrical power network or augment the existing distortion caused by other devices connected to the network. The goal is to design a controller for suppressing this noise at a reasonable level. We hope the thesis can be considered as a step forward to solve the original problem. One needs an accurate model of the AC-DC converter, to design such a controller. This study tries to clarify the effects of theline inductance on the performance of the converter by modeling and simulating the converter during the commutation time. The idea is to model and simulate the converter for two different conditions; first in the Normal condition by neglecting the effect of line impedance, second in the Commutation condition by considering the effect of the line impedance on commutation of the diodes. One can perform a complete simulation of the converter with combining these two models. The thesis deals with AC-DC converters, Hamiltonian-port modeling, simulation and MATLAB programming using the functionality of the S-function and SIMULINK.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-32328 |
Date | January 2013 |
Creators | Lotfalizadeh, Behnood |
Publisher | Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds