Return to search

Simulating Chemical Reactions of Glass Powder in Cement Using Silica, Calcium Hydroxide and Sodium Hydroxide

<p>The use of supplementary cementitious materials (SCM) decreases the environmental impact of the cement industry. SCMs are commercial by-products that possess pozzolanic properties. Recycled glass powder, classified as a SCM, when added as a cement replacement reacts with the available lime in the cement to form calcium silicate hydrate (C-S-H) products. In contrast with other SCMs, glass is siliceous and thus the reaction can also cause alkali silica reaction (ASR) which causes expansion and cracking. This study was completed in order to characterize the chemical reactions and their rate using a simplified system that mimics glass particles in hardened cement paste.</p> <p>Silica powder was added to solutions containing calcium hydroxide and/or sodium hydroxide. The rate of dissolution of the silica was monitored as well as the composition of the reaction products. Dissolution rates of silica with varying concentrations of silica, calcium hydroxide and sodium hydroxide, were fitted to the Hixson-Crowell cubic root law. The precipitate composition of the reaction product was represented by means of triaxial plots. It was found that silicate ions enter the solutions containing sodium hydroxide and containing both sodium hydroxide and calcium hydroxide. The rate is proportional to the quantity of sodium ions in the solution and to the pH. Also, higher concentrations of silica generally cause higher dissolution rates. The solutions with a pH of 13.48 and with lower silica concentrations created reaction products that were similar to C-S-H while the solutions with higher pH levels formed ASR after thirty days. The C-S-H prevented further dissolution of the silica. The formation of the ASR reaction products did not prevent further dissolution of the silica and they continued to dissolve until most of the silica had entered the solution.</p> / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/13686
Date04 1900
CreatorsYoung, Sarah
ContributorsChidiac, Samir E., Civil Engineering
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.002 seconds