Return to search

Raffinement local adaptatif et méthodes multiniveaux pour la simulation d'écoulements multipĥasiques.

Cette thèse est consacrée à l'étude de certains aspects numériques et mathématiques liés à la simulation d'écoulements incompressibles triphasiques à l'aide d'un modèle à interfaces diffuses de type Cahn-Hilliard/Navier-Stokes. La discrétisation spatiale est effectuée par éléments finis. La présence d'échelles très différentes dans le système suggère l'utilisation d'une méthode de raffinement local adaptatif. La procédure mise en place permet de tenir compte implicitement des non conformités des maillages générés, pour produire in fine des espaces d'approximation conformes. Nous montrons, en outre, qu'il est possible d'exploiter cette méthode pour construire des préconditionneurs multigrilles. Concernant la discrétisation en temps, notre étude a commencé par celle du système de Cahn-Hilliard. Pour remédier aux problèmes de convergence de la méthode de Newton utilisée pour résoudre ce système (non linéaire), nous proposons un schéma semi-implicite permettant de garantir la décroissance de l'énergie. Nous montrons l'existence et la convergence des solutions discrètes. Nous poursuivons ensuite cette étude en donnant une discrétisation en temps inconditionnellement stable du modèle complet Cahn-Hilliard/Navier-Stokes ne couplant pas fortement les deux systèmes. Nous montrons l'existence des solutions discrètes et, dans le cas où les trois fluides ont la même densité, nous montrons leur convergence. Nous étudions, pour terminer cette partie, diverses problématiques liées à l'utilisation de la méthode de projection incrémentale. Enfin, la dernière partie présente plusieurs exemples de simulations numériques, diphasiques et triphasiques, en deux et trois dimensions.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00535892
Date27 September 2010
CreatorsMinjeaud, Sebastian
PublisherUniversité Paul Cézanne - Aix-Marseille III
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds