Return to search

Managing the empirical hardness of the ontology reasoning using the predictive modelling / Modélisation prédictive et apprentissage automatique pour une meilleure gestion de la complexité empirique du raisonnement autour des ontologies

Multiples techniques d'optimisation ont été implémentées afin de surmonter le compromis entre la complexité des algorithmes du raisonnement et l'expressivité du langage de formulation des ontologies. Cependant les compagnes d'évaluation des raisonneurs continuent de confirmer l'aspect imprévisible et aléatoire des performances de ces logiciels à l'égard des ontologies issues du monde réel. Partant de ces observations, l'objectif principal de cette thèse est d'assurer une meilleure compréhension du comportement empirique des raisonneurs en fouillant davantage le contenu des ontologies. Nous avons déployé des techniques d'apprentissage supervisé afin d'anticiper des comportements futurs des raisonneurs. Nos propositions sont établies sous forme d'un système d'assistance aux utilisateurs d'ontologies, appelé "ADSOR". Quatre composantes principales ont été proposées. La première est un profileur d'ontologies. La deuxième est un module d'apprentissage capable d'établir des modèles prédictifs de la robustesse des raisonneurs et de la difficulté empirique des ontologies. La troisième composante est un module d'ordonnancement par apprentissage, pour la sélection du raisonneur le plus robuste étant donnée une ontologie. Nous avons proposé deux approches d'ordonnancement; la première fondée sur la prédiction mono-label et la seconde sur la prédiction multi-label. La dernière composante offre la possibilité d'extraire les parties potentiellement les plus complexes d'une ontologie. L'identification de ces parties est guidée par notre modèle de prédiction du niveau de difficulté d'une ontologie. Chacune de nos approches a été validée grâce à une large palette d'expérimentations. / Highly optimized reasoning algorithms have been developed to allow inference tasks on expressive ontology languages such as OWL (DL). Nevertheless, reasoning remains a challenge in practice. In overall, a reasoner could be optimized for some, but not all ontologies. Given these observations, the main purpose of this thesis is to investigate means to cope with the reasoner performances variability phenomena. We opted for the supervised learning as the kernel theory to guide the design of our solution. Our main claim is that the output quality of a reasoner is closely depending on the quality of the ontology. Accordingly, we first introduced a novel collection of features which characterise the design quality of an OWL ontology. Afterwards, we modelled a generic learning framework to help predicting the overall empirical hardness of an ontology; and to anticipate a reasoner robustness under some online usage constraints. Later on, we discussed the issue of reasoner automatic selection for ontology based applications. We introduced a novel reasoner ranking framework. Correctness and efficiency are our main ranking criteria. We proposed two distinct methods: i) ranking based on single label prediction, and ii) a multi-label ranking method. Finally, we suggested to extract the ontology sub-parts that are the most computationally demanding ones. Our method relies on the atomic decomposition and the locality modules extraction techniques and employs our predictive model of the ontology hardness. Excessive experimentations were carried out to prove the worthiness of our approaches. All of our proposals were gathered in a user assistance system called "ADSOR".

Identiferoai:union.ndltd.org:theses.fr/2016PA080062
Date13 October 2016
CreatorsAlaya Mili, Nourhene
ContributorsParis 8, Lamolle, Myriam, Ben Yahia, Sadok
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds