The estimation results of Brazilian risk premia are not robust in the literature. For instance, among the 133 market risk premium estimates reported on the literature, 41 are positives, 18 are negatives and the remainder are not significant. In this study, we investigate the grounds for this lack of consensus. First of all, we analyze the sensitivity of the US risk premia estimation to two relevant constraints present in the Brazilian market: the small number of assets (137 eligible stocks) and the short time-series sample available for estimation (14 years). We conclude that the second constrain, small T, has greater impact on the results. Following, we evaluate the two potential causes of problems for the risk premia estimation with small T: i) small sample bias on betas; ii) divergence between ex-post and ex-ante risk premia. Through Monte Carlo simulations, we conclude that for the T available for Brazil, the betas estimates are no longer a problem. However, it is necessary to wait until 2041 to be able to estimate ex-ante risk premia with Brazilian data. / Os resultados das estimações de prêmios de risco brasileiros não são robustos na literatura. Por exemplo, dentre 133 estimativas de prêmio de risco de mercado documentadas, 41 são positivas, 18 negativas e o restante não é significante. No presente trabalho, investigamos os motivos da falta de consenso. Primeiramente, analisamos a sensibilidade da estimação dos prêmios de risco norte-americanos a duas restrições presentes no mercado brasileiro: o baixo número de ativos (137 ações elegíveis) e a pequena quantidade de meses disponíveis para estimação (14 anos). Concluímos que a segunda restrição, T pequeno, tem maior impacto sobre os resultados. Em seguida, avaliamos as duas potenciais causas de problemas para a estimação de prêmios de risco em amostras com T pequeno: i) viés de pequenas amostras nas estimativas dos betas; e ii) divergência entre prêmio de risco ex-post e ex-ante. Através de exercícios de Monte Carlo, concluímos que para o T disponível no Brasil, a estimativa dos betas já não é mais um problema. No entanto, ainda precisamos esperar até 2041 para conseguirmos estimar corretamente os prêmios ex-ante com os dados brasileiros.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-23082016-103818 |
Date | 20 June 2016 |
Creators | Cavalcante Filho, Elias |
Contributors | Giovannetti, Bruno Cara |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds