Return to search

Processing of Boron Carbide

The processing of boron carbide powder including sintering optimization, green body optimization and sintering behavior of nano-sized boron carbide was investigated for the development of complex shaped body armor.
Pressureless sintered B4C relative densities as high as 96.7% were obtained by optimizing the soak temperature, and holding at that temperature for the minimum time required to reach terminal density. Although the relative densities of pressureless sintered specimens were lower than that of commercially produced hot-pressed B4C, their (Vickers) hardness values were comparable. For 4.45cm diameter and 1.35cm height disk shaped specimens, pressureless sintered to at least 93.0% relative density, post-hot isostatic pressing resulted in vast increases in relative densities (e.g. 100.0%) and hardness values significantly greater than that of commercially produced hot-pressed B4C.
The densification behavior of 20-40nm graphite-coated B4C nano-particles was studied using dilatometry, x-ray diffraction and electron microscopy. The higher than expected sintering onset from a nano-scale powder (15008C) was caused by remnant B2O3 not removed by methanol washing, keeping particles separated until volatilization and the carbon coatings, which imposed particle to particle contact of a substance more refractory than B4C. Solid state sintering (1500-18508C) was followed by an arrest in contraction attributed to formation of eutectic liquid droplets of size more than 10X the original nano-particles. These droplets, induced to form well below known B4C-graphite eutectic temperatures by the high surface energy of nano-particles, are interpreted to have quickly solidified to form a vast number of voids in particle packing, which in turn, impeded continued solid state sintering. Starting at 22008C, a permanent liquid phase formed which facilitated a rapid measured contraction by liquid phase sintering and/or compact slumping.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/11567
Date07 July 2006
CreatorsCho, Namtae
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format12224619 bytes, application/pdf

Page generated in 0.0046 seconds