Return to search

MODÈLES STOCHASTIQUES INTERAGISSANTS : SYNCHRONISATION ET RÉDUCTION À UN SYSTÈME DE PHASES

Le sujet de cette thèse est l'étude du rôle du bruit dans les systèmes interagissants, avec en vue des applications dans les systèmes biologiques. Cette étude est basée sur le modèle de Kuramoto, qui est un modèle d'oscillateurs uni-dimensionnels interagissants admettant une transition de phase de synchronisation, ainsi que sur certaines de ses généralisations. Une première partie (réalisée en collaboration avec G. Giacomin, K. Pakdaman et X. Pellegrin) est consacrée au modèle des "Active Rotators", une généralisation du modèle de Kuramoto, dans lequel chaque oscillateur a une dynamique propre, qui est peut être choisie excitable. Nous démontrons de manière rigoureuse que le système global peut avoir une dynamique très différente de celle d'un oscillateur isolé, en réduisant le problème à un problème de phase. On peut en particulier voir l'apparition de phénomènes périodiques. La deuxième partie (réalisée en collaboration avec G. Giacomin et E. Luçon) est consacrée à l'étude du modèle de Kuramoto bruité, dans la limite du faible désordre. Nous démontrons en particulier, dans le cas où le désordre n'est pas symétrique, l'existence d'une solution périodique et donnons un développement de sa vitesse. La troisième partie (réalisée en collaboration avec G. Giacomin et L. Bertini) est consacrée au comportement du modèle de Kuramoto en temps long (proportionnel au nombre d'oscillateurs): les oscillateurs conservent un profil synchronisé qui se déplace dans la limite d'une infinité d'oscillateurs suivant un mouvement Brownien. Enfin dans la dernière partie je me suis intéressé à la problématique de réduction de phase dans le cas du problème de sortie de potentiel, pour des modèle proches de la réversibilité.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00966053
Date08 October 2013
CreatorsPoquet, Christophe
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds