Les travaux présentés dans cette thèse concernent le problème d'identification des systèmes à retards et d'une certaine classe de systèmes hybrides appelés systèmes "impulsifs".Dans la première partie, un algorithme d'identification rapide a été proposé pour les systèmes à entrée retardée. Il est basé sur une méthode d'estimation distributionnelle non asymptotique initiée pour les systèmes sans retard. Une telle technique mène à des schémas de réalisation simples, impliquant des intégrateurs, des multiplicateurs et des fonctions continues par morceaux polynomiales ou exponentielles. Dans le but de généraliser cette approche pour les systèmes à retard, trois exemples d'applications ont été étudiées. La deuxième partie a été consacrée à l'identification des systèmes impulsifs. En se basant sur le formalisme des distributions, une procédure d'identification a été élaborée afin d'annihiler les termes singuliers des équations différentielles représentant ces systèmes. Par conséquent, une estimation en ligne des instants de commutations et des paramètres inconnus est prévue indépendamment des lois de commutations. Des simulations numériques d'un pendule simple soumis à des frottements secs illustrent notre méthodologie / This PhD thesis concerns the problem of identification of the delays systems and the continuous-time systems subject to impulsive terms.Firstly, a fast identification algorithm is proposed for systems with delayed inputs. It is based on a non-asymptotic distributional estimation technique initiated in the framework of systems without delay. Such technique leads to simple realization schemes, involving integrators, multipliers andContribution to the identification of time delays systems and a class of hybrid systems piecewise polynomial or exponential time functions. Thus, it allows for a real time implementation. In order to introduce a generalization to systems with input delay, three simple examples are presented.The second part deals with on-line identification of continuous-time systems subject to impulsive terms. Using a distribution framework, a scheme is proposed in order to annihilate singular terms in differential equations representing a class of impulsive systems. As a result, an online estimation of unknown parameters is provided, regardless of the switching times or the impulse rules. Numerical simulations of simple pendulum subjected to dry friction are illustrating our methodology
Identifer | oai:union.ndltd.org:theses.fr/2010ECLI0023 |
Date | 17 December 2010 |
Creators | Ibn Taarit, Kaouther |
Contributors | Ecole centrale de Lille, École nationale d'ingénieurs de Tunis (Tunisie), Richard, Jean-Pierre, Ksouri, Mekki, Belkoura, Lotfi |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds