Return to search

Representing video game style with procedurally generated content : How wave function collapse can be used to represent style in video games

As the video gaming industry continues to grow, developers face increasing pressure to produce innovative content swiftly and cost-effectively. Procedural Content Generation (PCG), the use of algorithms to automate content creation, offers a solution to this problem. This paper explores the PCG algorithm wave function collapse’s (WFC) potential for replicating the stylistic design in video games. We provide an exploration of how the WFC algorithm works and discuss the methodology used to evaluate the generator’s ability to generate content that mimics a video game style. The study evaluates the algorithm’s efficacy by generating levels in the style of the iconic game Super Mario Bros, highlighting its ability to produce original content while maintaining the game’s stylistic features. Additionally, we do an examination of the research surrounding PCG and Machine Learning in Super Mario Bros, drawing comparisons with our methodology. The paper concludes with an assessment of WFC’s capabilities to replicate style with its generated content with the help of earlier established evaluation metrics. / Med den växande videospelsindustrin så möter utvecklare ett ökande tryck att producera innovativt innehåll snabbt och kostnadseffektivt. Procedural Content Generation (PCG), användningen av algoritmer för att automatisera skapandet av sådant innehåll, erbjuder en lösning på detta problem. Denna artikeln utforskar PCG-algoritmen wave function collapses (WFC) potentiella användning för att replikera design i datorspel. Vi ger en förklaring hur WFC-algoritmen fungerar och diskuterar metodiken som används för att utvärdera generatorns förmåga att generera innehåll som efterliknar ett visst datorspel stil. Studien utvärderar algoritmens effektivitet genom att generera nivåer i samma stil som i det ikoniska spelet Super Mario Bros, vilket betonar algoritmens förmåga att producera originellt innehåll samtidigt som den bevarar spelets stilistiska egenskaper. Dessutom undersöker forskningen kring PCG och maskininlärning i Super Mario Bros, och gör jämförelser med vår egna metodik. Uppsatsen avslutas med en bedömning av WFC:s förmåga att replikera stil med dess genererade innehåll med hjälp av tidigare etablerade utvärderingsmått.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-333660
Date January 2023
CreatorsHedman, Filip, Håkansson, Martin
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2023:215

Page generated in 0.0028 seconds