Return to search

Contributions à l'étude des processus de Lévy et des processus fractionnaires via le calcul de Malliavin et applications en statistique

Cette thèse se décompose en six chapitres plus ou moins distincts. Cependant, tous font appel au calcul de Malliavin, aux notions de processus gaussien et processus de Lévy, et à leur utilisation en statistique. Chacune des trois parties a fait l'objet de deux articles. <br />Dans la première partie, nous établissons les théorèmes d'Itô et deTanaka pour le mouvement brownien bifractionnaire multidimensionnel. Ensuite nous étudions l'existence de la densité d'occupation pour certains processus en relation avec le mouvement brownien fractionnaire.<br />Dans la deuxième partie, nous analysons, dans un premier temps, le comportement asymptotique de la variation cubique pour le processus de Rosenblatt. Dans un deuxième temps, nous construisons d'une part des estimateurs efficace pour la dérive de mouvement brownien fractionnaire et d'autre part des estimateurs biaisés de type James-Stein qui dominent, sous le riqsue quadratique usuel, l'estimateur du maximum de vraisemblance.<br />La dernière partie présente deux travaux. Dans le premier, nous utilisons une approche menant à un calcul de Malliavin pour les processus de Lévy, qui a été développée récemment par Solé et al. , et nous étudions des processus anticipés de type intégrale d'Itô-Skorohod sur l'espace de Lévy. Dans le deuxième, nous étudions le lien entre les processus stables et les processus auto-similaires, à travers des processus qui sont infiniment divisibles en temps.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00382521
Date25 April 2009
CreatorsEs-Sebaiy, Khalifa
PublisherUniversité Panthéon-Sorbonne - Paris I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds