En France, il est envisagé de stocker en formation géologique profonde les déchets radioactifs vitrifiés à haute activité et vie longue dans un conteneur en acier inoxydable chemisé par un surconteneur en acier non allié. Les principaux produits de corrosion attendus à la surface de ce dernier, i.e. la sidérite (FeIICO3) et la magnétite (FeIIFeIII2O4), jouent un rôle protecteur contre la corrosion en tant que couche passivante. Ce travail de thèse visait à étudier l’influence des groupes métaboliques bactériens réducteurs du fer ferrique (IRB) et des nitrates (NRB) sur les transformations de ces produits de corrosion en anoxie. Des souches modèles de NRB (Klebsiella mobilis) et IRB (Shewanella putrefaciens) ont, dans un premier temps, été incubées en présence de suspension de sidérite ou de magnétite, afin d’exacerber les processus de transformation du fer du fait d’une surface spécifique élevée, puis dans un second temps, en présence de films électrogénérés de ces produits pour se rapprocher des conditions d’un acier non allié corrodé en anoxie. Ces souches bactériennes sont capables de transformer la sidérite et la magnétite par des processus microbiens directs ou indirects et de conduire à la formation de rouille verte carbonatée (FeII4FeIII2(OH)12CO3). Ce composé occupe une place centrale dans le cycle biogéochimique du fer en anoxie en tant que transitoire commun à plusieurs réactions microbiennes mobilisant le fer sous deux états d’oxydation différents FeII et FeIII. L’originalité de ce travail de thèse est donc de montrer que des métabolismes bactériens inaccoutumés tels que les NRB ou les IRB sont susceptibles de jouer un rôle dans les processus de biocorrosion / Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (FeIICO3) and magnetite (FeIIFeIII2O4). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (FeII4FeIII2(OH)12CO3). As a transient phase shared by several bacterial reactions involving FeII and FeIII, this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in biocorrosion processes
Identifer | oai:union.ndltd.org:theses.fr/2014LORR0254 |
Date | 28 November 2014 |
Creators | Etique, Marjorie |
Contributors | Université de Lorraine, Ruby, Christian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds