Le dioxyde d'uranium (UO2) est le combustible nucléaire le plus largement répandu dans le monde pour alimenter les centrales nucléaires et plus particulièrement les réacteurs à eau pressurisée (REP). En réacteur, la fission des atomes d'uranium crée des produits de fission et des défauts ponctuels dans le matériau combustible. La compréhension de l'évolution de ces dégâts d'irradiation nécessite une approche de modélisation multi-échelle, de l'échelle de la pastille combustible à l'échelle atomique. Nous avons utilisé une méthode de calcul de structure électronique (DFT), pour modéliser les dégâts d'irradiation dans UO2 à l'échelle atomique. Un terme d'interaction Coulombienne de type Hubbard est ajouté au formalisme de la DFT standard pour prendre en compte les fortes corrélations des électrons 5f dans l'UO2. Cette méthode a été utilisée pour étudier les défauts ponctuels dans différents états de charge ainsi que l'incorporation et la diffusion du krypton dans le dioxyde d'uranium. Cette étude nous a permis d'obtenir des données clés pour les modèles aux échelles supérieures mais aussi pour interpréter des résultats expérimentaux. En parallèle de cette étude, trois pistes d'amélioration de l'état de l'art des calculs pour la description de l'UO2 ont été explorées : la prise en compte du couplage spin-orbite, l'application de fonctionnelles permettant la prise en compte des interactions non locales telles que les interactions de van der Waals importantes pour les gaz rares et l'utilisation de la théorie de champ dynamique moyen (Dynamical Mean Field Theory) combinée à la DFT afin de prendre en compte les corrélations dynamiques des électrons 5f. / Uranium dioxide (UO2) is worldwide the most widely used fuel in nuclear plants in the world and in particular in pressurized water reactors (PWR). In-pile the fission of uranium nuclei creates fission products and point defects in the fuel. The understanding of the evolution of these radiation damages requires a multi-scale modelling approach of the nuclear fuel, from the scale of the pellet to the atomic scale. We used an electronic structure calculation method based on the density functional theory (DFT) to model radiation damage in UO2 at the atomic scale. A Hubbard-type Coulomb interaction term is added to the standard DFT formalism to take into account the strong correlations of the 5f electrons in UO2. This method is used to study point defects with various charge states and the incorporation and diffusion of krypton in uranium dioxide. This study allowed us to obtain essential data for higher scale models but also to interpret experimental results. In parallel of this study, three ways to improve the state of the art of electronic structure calculations of UO2 have been explored: the consideration of the spin-orbit coupling neglected in current point defect calculations, the application of functionals allowing one to take into account the non-local interactions such as van der Waals interactions important for rare gases and the use of the Dynamical Mean Field Theory combined to the DFT method in order to take into account the dynamical effects in the 5f electron correlations.
Identifer | oai:union.ndltd.org:theses.fr/2014AIXM4048 |
Date | 20 October 2014 |
Creators | Vathonne, Emerson |
Contributors | Aix-Marseille, Tréglia, Guy |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds