Un des plus grands défis de la neuroscience moderne pour parvenir à comprendre et diagnostiquer les maladies du cerveau est de déchiffrer les détails des interactions neuronales dans le cerveau vivant. Pour ce faire, on doit être capable d'observer des populations de cellules vivantes dans leur matrice d'origine avec une bonne résolution spatiale et temporelle. La microscopie à deux photons se prête bien à cet exercice car elle permet d'exciter des fluorophores à de grandes profondeurs dans les tissus biologiques et elle offre une résolution spatiale de l'ordre du micron. Malheureusement, la très bonne résolution tridimensionnelle diminue la résolution temporelle, car l'effet de sectionnement optique causé par la faible profondeur de champ du microscope nous oblige à balayer les échantillons épais une multitude de fois avant de pouvoir compléter l'acquisition d'un grand volume. Dans ce projet de doctorat, nous avons conçu, construit et caractérisé un microscope à deux photons avec une profondeur de champ étendue afin de faciliter l'imagerie fonctionnelle de neurones dans un échantillon épais. Pour augmenter la profondeur de champ du microscope à deux photons, nous avons modifié le faisceau laser entrant dans le système optique afin de générer une aiguille de lumière, orientée axialement, dans l'échantillon au lieu d'un point. Nous modifions le faisceau laser avec un axicon, une lentille en forme de cône qui transforme le faisceau gaussien en un faisceau quasi non-diffractant, de type Bessel-Gauss. Le faisceau d'excitation conserve donc la même résolution transverse à différentes profondeurs dans l'échantillon, éliminant le besoin de balayer l'échantillon à répétition afin de sonder un volume complet. Dans cette thèse, nous démontrons que le microscope à grande profondeur de champ fonctionne effectivement tel que nous l'avons conçu et nous l'utilisons pour faire de l'imagerie calcique dans un réseau tridimensionnel de neurones vivants. Nous présentons aussi les différents avantages de notre système par rapport à la microscopie à deux photons conventionnelle. / One of the greatest challenges of modern neuroscience that will lead to a better understanding and earlier diagnostics of brain sickness is to decipher the details of neuronal interactions in the living brain. To achieve this goal, we must be capable of observing populations of living cells in their original matrix with a good resolution, both spatial and temporal. Two-photon microscopy offers the right tools for this since it presents with a spatial resolution in the order of the micron. Unfortunately, this very good three-dimensional resolution lowers the temporal resolution because the optical sectioning caused by the microscope's small depth of field forces us to scan thick samples repeatedly when acquiring data from a large volume. In this doctoral project, we have designed, built and characterized a two-photon microscope with an extended depth of field with the goal of simplifying the functional imaging of neurons in thick samples. To increase the laser scanning microscope's depth of field, we shaped the laser beam entering the optical system in such a way that a needle of light is generated inside the sample instead of a spot. We modify the laser beam with an axicon, a cone-shaped lens that transforms a gaussian beam into a quasi non-diffractive beam called Bessel-Gauss beam. The excitation beam therefore maintains the same transverse resolution at different depths inside the sample, eliminating the need for many scans in order to probe the entire volume of interest. In this thesis, we demonstrate that the extended depth of field microscope effectively works as we designed it, and we use it to image calcium dynamics in a three-dimensional network of live neurons. We also present the different advantages of our system in comparison with standard two-photon microscopy.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/25740 |
Date | 23 April 2018 |
Creators | Thériault, Gabrielle |
Contributors | De Koninck, Yves, McCarthy, Nathalie |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xvii, 126 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0023 seconds