Return to search

Étude sur la fonction de la phosphorylation de la protéine Argonaute ALG-1 chez C. elegans

NOTICE EN COURS DE TRAITEMENT / Les microARN (miARN) sont des courts ARN non codants qui régulent l'expression des gènes, au niveau post-transcriptionnel. Ces molécules d'environ 22 nucléotides de long s'associent aux protéines Argonautes (AGO) pour former un complexe appelé microRNA induced silencing complex (miRISC). Ensuite, les miARN recrutent le miRISC à des séquences partiellement complémentaires, dans les régions 3' non traduites d'ARN messagers (ARNm). Le miRISC peut ainsi réprimer la traduction d'ARNm spécifiques et souvent induire leur dégradation. Ce mécanisme est notamment important pour le développement animal et des défauts dans cette voie moléculaire sont liés à diverses pathologies chez l'humain. Des évidences récentes montrent que les interacteurs du miRISC et son mode d'action sur les ARNm peuvent diverger à différents moments du développement du nématode Caenorhabditis elegans. Nous avons donc posé l'hypothèse que des modifications post-traductionnelles pourraient expliquer certaines de ces différences moléculaires et fonctionnelles. Les objectifs de ce projet de recherche étaient donc d'identifier les événements de phosphorylation sur la protéine Argonaute ALG-1 de C. elegans et de déterminer leur fonction biologique au cours du développement animal. À cette fin, nous avons purifié la protéine Argonaute ALG-1 chez C. elegans avec un anticorps spécifique, ainsi que ses orthologues humains AGO 1-4, à partir de cellules humaines en culture. Nous avons déterminé par spectrométrie de masse les modifications post-traductionnelles sur ces protéines. En utilisant des méthodes de mutagenèse par édition du génome chez C. elegans, nous avons criblé l'importance de nombreux sites de phosphorylation en s'attardant aux phénotypes associés à la perte de fonction des miARN. Ceci nous a permis de mettre en évidence l'importance d'une région phosphorylable conservée de cinq résidus sérines/thréonine sur le domaine PIWI des Argonautes. La perte de phosphorylation de ALG-1, lorsque ces acides aminés sont mutés en alanines, produit des phénotypes développementaux beaucoup plus sévères que chez des animaux déplétés du gène alg-1. Au niveau moléculaire, nous avons montré, à partir de cellules humaines en culture, que l'hyperphosphorylation de ces acides aminés réduit l'association aux ARNm. De plus, nous avons montré que des mutants AGO2 qui ne sont pas en mesure de lier les miARN, ne sont pas hyperphosphorylés sur ces résidus dans les cellules humaines en culture. Ces résultats mettent en évidence un nouveau mécanisme de régulation de la voie de miARN, dans lequel l'hyperphosphorylation du domaine PIWI de l'Argonaute permet la dissociation du miRISC de sa cible. Nous proposons donc que la phosphorylation de cette région permettrait au miRISC d'être recyclé et de réprimer l'expression d'autres ARNm après sa déphosphorylation. En second lieu, notre crible a permis d'identifier une sérine phosphorylable sur le domaine MID de ALG-1 qui régule l'association de la protéine aux miARN, lors du développement du nématode. Nous avons montré que lorsque cette sérine est mutée en glutamate (phospho-mimétique) ALG-1 perd son association aux miARN. Par ailleurs, les animaux qui portent cette mutation présentent des niveaux de miARN moins élevés que chez les animaux sauvages, ainsi qu'une accumulation de brins passagers qui sont issus des duplex de miARN et normalement dissociés par AGO. Nous avons ensuite identifié l'enzyme qui produit la phosphorylation de cette sérine. Avec des expériences de phosphorylation in vitro, nous avons montré que cette phosphorylation pourrait être induite par la protéine kinase A (PKA). De surcroît, nos expériences soutiennent que alg-1 et PKA interagissent génétiquement. Précisément, le mutant non phosphorylable alg-1(S642A) supprime des phénotypes développementaux observés lors de la perte de fonction de la sous-unité régulatrice de PKA, kin-2. En somme, ce projet de recherche a permis de mettre en évidence un mécanisme conservé au cours de l'évolution qui régule l'association du miRISC aux ARNm par la phosphorylation des Argonautes, ainsi qu'un mécanisme qui régule l'association de ALG-1 aux miARN chez C. elegans. Notre étude indique d'ailleurs que le miRISC serait possiblement inhibé à des moments précis lors du développement animal, par exemple lors de la phosphorylation par PKA. Les études futures des voies signalétiques qui activent PKA chez le nématode nous permettra de mieux comprendre la fonction biologique et le contexte cellulaire qui requerrait l'inactivation du miRISC. / MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate gene expression in eukaryotes. These molecules are ~22 nucleotides in length and associate with Argonaute proteins (AGO) to guide them to mRNAs that contain sequences with partial complementarity, commonly found in the 3' untranslated region (UTR). The interaction between the miRISC (miRNA induced silencing complex) and the mRNA inhibits protein synthesis and often leads to degradation of the transcripts. While the function and importance of this gene regulation pathway has been studied in plant and animal models, mechanisms that modulate the miRISC gene silencing efficiency in different biological settings are still poorly understood. The hypothesis of my research project conveys the idea that post-translational modifications of Argonaute proteins modulate gene silencing during animal development. To test this hypothesis, we aimed to identify phosphorylation events on the Argonaute ALG-1 in the nematode C. elegans and uncover how these modifications affect its function during animal development. We purified ALG-1 protein from C. elegans extracts with a specific antibody and human Argonautes AGO1-4 from human cell cultures. We identified phosphorylated Argonaute peptides using mass spectrometry analysis and then we screened which modification affected ALG-1 function using gene editing. This led to the discovery of a highly conserved serine/threonine phosphorylation cluster on the PIWI domain of the Argonaute that when mutated into non-phosphorylatable amino-acids (alanine) caused phenotypes that were more severe than the loss of alg-1 in C. elegans. Molecular analysis of these phosphorylation sites showed that they modulate association to miRNA targets. Specifically, when using phospho-mimicking mutations on human AGO2, we showed that the hyperphosphorylation of this cluster causes the Argonaute to lose interaction with mRNAs. Furthermore, we showed that AGO mutants that are deficient for miRNA binding do not undergo hyperphosporylation. These results revealed a new mechanism that regulate miRNA-mediated gene silencing by which unphosphorylated AGO binds miRNA targets and following hyperphosporylation the miRISC is released from mRNAs. We proposed that this mechanism could be used by cells to recycle the complex and permit multiple rounds of silencing by the miRISC after dephosphorylation. Our forward genetic screen of ALG-1 phosphorylation sites identified a serine on the MID domain that modulates association to miRNAs. We showed that phospho-mimicking mutation of ALG-1 at this position impaired the ability of ALG-1 to bind most miRNAs. Furthermore, we found that this mutation led to accumulation of passenger strands miRNAs in the total RNA. Since the passenger strands are not bound by the phospho-mimicking mutant, we suggested that they accumulate as duplexes which would render them refractory to degradation by single stranded nucleases. Last we showed that the protein kinase A (PKA) phosphorylates this residue in vitro and interacts genetically with alg-1. Altogether, this research project uncovered new mechanisms that regulate the miRNA pathway through the phosphorylation of the Argonaute proteins. Our study also suggests that ALG-1 is inhibited at specific timing by PKA during C. elegans development, and further study of the biological settings that require this inactivation will be crucial to understand its function.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/126863
Date13 October 2023
CreatorsQuévillon-Huberdeau, Miguel
ContributorsSimard, Martin
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xviii, 232 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0035 seconds