Return to search

LADAR Proximity Fuze - System Study -

LADAR (Laser Detection and Ranging) systems constitue a direct extension of the conventional radar techniques. Because they operate at much shorter wavelengths, LADARs have the unique capability to generate 3D images of objects. These laser systems have many applications in both the civilian and the defence fields concerning target detection and identification. The extraction of these features depends on the processing algorithms, target properties and 3D images quality. In order to support future LADAR hardware device developments and system engineering studies, it is necessary to understand the influences of the phenomena leading to the final image. Hence, the modelling of the laser pulse, propagations effects, reflection properties, detection technique and receiver signal processinghave to be taken into account. A complete simulator has been developed consisting of a graphical user interface and a simulation program. The computer simulation produces simulated 3D images for a direct detection pulse LADAR under a wide variety of conditions. Each stage from the laser source to the 3D image generation has been modelled. It yields an efficient simulation tool which will be of help in the design of the future LADAR systems and gauge their performances. This master’s thesis contains the theoretical background about laser used to build the simulation program. The latter is described schematically in order to provide an insight for the reader. The graphical interface is then presented as a short user’s manual. Finally, in order to illustrate the possibilities of the simulator, a collection of selected simulations concludes the report.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-106247
Date January 2007
CreatorsBlanquer, Eric
PublisherKTH, Reglerteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0062 seconds