Les technologies avancées de semi-conducteur permettent de mettre en œuvre un contrôleur numérique dédié aux convertisseurs à découpage, de faible puissance et de fréquence de découpage élevée sur FPGA et ASIC. Cette thèse vise à proposer des contrôleurs numériques des performances élevées, de faible consommation énergétique et qui peuvent être implémentés facilement. En plus des contrôleurs numériques existants comme PID, RST, tri-mode et par mode de glissement, un nouveau contrôleur numérique (DDP) pour le convertisseur abaisseur de tension est proposé sur le principe de la commande prédictive: il introduit une nouvelle variable de contrôle qui est la position de la largeur d'impulsion permettant de contrôler de façon simultanée le courant dans l'inductance et la tension de sortie. La solution permet une dynamique très rapide en transitoire, aussi bien pour la variation de la charge que pour les changements de tension de référence. Les résultats expérimentaux sur FPGA vérifient les performances de ce contrôleur jusqu'à la fréquence de découpage de 4MHz. Un contrôleur numérique nécessite une modulation numérique de largeur d'impulsion (DPWM). L'approche Sigma-Delta de la DPWM est un bon candidat en ce qui concerne le compromis entre la complexité et les performances. Un guide de conception d'étage Sigma-Delta pour le DPWM est présenté. Une architecture améliorée de traditionnelles 1-1 MASH Sigma-Delta DPWM est synthétisée sans détérioration de la stabilité en boucle fermée ainsi qu'en préservant un coût raisonnable en ressources matérielles. Les résultats expérimentaux sur FPGA vérifient les performances des DPWM proposées en régimes stationnaire et transitoire. Deux ASICs sont portés en CMOS 0,35µm: le contrôleur en tri-mode pour le convertisseur abaisseur de tension et la commande par mode de glissement pour les convertisseurs abaisseur et élévateur de tension. Les bancs de test sont conçus pour conduire à un modèle d'évaluation de consommation énergétique. Pour le contrôleur en tri-mode, la consommation de puissance mesurée est seulement de 24,56mW/MHz lorsque le ratio de temps en régime de repos (stand-by) est 0,7. Les consommations de puissance de command par mode de glissement pour les convertisseurs abaisseur et élévateur de tension sont respectivement de 4,46mW/MHz et 4,79mW/MHz. En utilisant le modèle de puissance, une consommation de la puissance estimée inférieure à 1mW/MHz est envisageable dans des technologies CMOS plus avancées. Comparé aux contrôlés homologues analogiques de l'état de l'art, les prototypes ASICs illustrent la possibilité d'atteindre un rendement comparable pour les applications de faible et de moyen puissance mais avec l'avantage d'une meilleure précision et une meilleure flexibilité. / Owing to the development of modern semiconductor technology, it is possible to implement a digital controller for low-power high switching frequency DC-DC power converter in FPGA and ASIC. This thesis is intended to propose digital controllers with high performance, low power consumption and simple implementation architecture. Besides existing digital control-laws, such as PID, RST, tri-mode and sliding-mode (SM), a novel digital control-law, direct control with dual-state-variable prediction (DDP control), for the buck converter is proposed based on the principle of predictive control. Compared to traditional current-mode predictive control, the predictions of the inductor current and the output voltage are performed at the same time by adding a control variable to the DPWM signal. DDP control exhibits very high dynamic transient performances under both load variations and reference changes. Experimental results in FPGA verify the performances at switching frequency up to 4MHz. For the boost converter exhibiting more serious nonlinearity, linear PID and nonlinear SM controllers are designed and implemented in FPGA to verify the performances. A digital control requires a DPWM. Sigma-Delta DPWM is therefore a good candidate regarding the implementation complexity and performances. An idle-tone free condition for Sigma-Delta DPWM is considered to reduce the inherent tone-noise under DC-excitation compared to the classic approach. A guideline for Sigma-Delta DPWM helps to satisfy proposed condition. In addition, an 1-1 MASH Sigma-Delta DPWM with a feasible dither generation module is proposed to further restrain the idle-tone effect without deteriorating the closed-loop stability as well as to preserve a reasonable cost in hardware resources. The FPGA-based experimental results verify the performances of proposed DPWM in steady-state and transient-state. Two ASICs in 0.35µm CMOS process are implemented including the tri-mode controller for buck converter and the PID and SM controllers for the buck and boost converters respectively. The lab-scale tests are designed to lead to a power assessment model suggesting feasible applications. For the tri-mode controller, the measured power consumption is only 24.56mW/MHz when the time ratio of stand-by operation mode is 0.7. As specific power optimization strategies in RTL and system-level are applied to the latter chip, the measured power consumptions of the SM controllers for buck converter and boost converter are 4.46mW/MHz and 4.79mW/MHz respectively. The power consumption is foreseen as less than 1mW/MHz when the process scales down to nanometer technologies based on the power-scaling model. Compared to the state-of-the-art analog counterpart, the prototype ICs are proven to achieve comparable or even higher power efficiency for low-to-medium power applications with the benefit of better accuracy and better flexibility.
Identifer | oai:union.ndltd.org:theses.fr/2012ISAL0036 |
Date | 07 May 2012 |
Creators | Li, Bo |
Contributors | Lyon, INSA, Allard, Bruno, Lin-Shi, Xuefang |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds