Return to search

Estudo da reação de hidrólise alcalina de íons n-Alquil-4-Cianopiridíneos em micelas / Study of the reaction of ions of alkaline hydrolysis N-alkyl-4-cyano pyridinium ions in micelle

A reação de hidrólise alcalina em fase aquosa de ions N-alquil-4-cianopiridíneos (RCP) foi caracterizada com relação a efeitos de pH, força iônica (&#181;) e constante dielétrica do meio (D) A hidrólise alcalina dos RCP resulta na formação de dois produtos, i.é., a N-alquil-4-carboxiamidopiridíneo (A) e a N-alquil-4-piridona (P) correspondentes. A relação P/A é função crescente de pH e atinge um valor limite de 1,75 para todos os RCP empregados. No entanto, em misturas água/dioxana a formação de P é preferencial. A constante de velocidade observada (k&#968;) de pseudo primeira ordem de hidrólise dos RCP é função de pH. Em solução aquosa (&#181;=0,02) esta dependência pode ser expressa por : log k&#968; = 1,0702 pH - 14,3 Os efeitos devidos a variações em &#181; e D sobre k&#968;, foram analisados segundo os modelos de Debye-Hückel (Robinson, R.A. e Stokes, R.H. em \"Electrolyte Solutions\", 1955) e Brönsted - Christiansen - Scatchard (Amis, E.S. em \"Solven t Effects on Reaction Rates and Mechanisms\", 1966). Os estudos dos efeitos de pH , &#181; e D sobre k&#968; serviram como modelos de referência para racionalizar efeitos de detergentes de vários tipos estruturais tanto na velocidade, como na razão de produtos resultantes da hidrólise alcalina dos RCP. Em soluções tamponadas de micelas de hexadeciltrimetilamônio (CTAB), a k&#968; de hidrólise do íon N-metil-4-cianopiridíneo (MCP) é independente da concentração de detergente. Por outro lado, k&#968; aumenta com CTAB, acima da concentração crítica de micelização (CMC) para íons N-butil (BCP), N-octil (OCP) e N-dodecil-4-cianopiridíneo (DCP) . No caso do DCP o valor máximo de k&#968; na presença de CTAB (k&#968;máx ) é cerca de 200 vêzes maior que k&#968; na ausência de CTAB (k&#968;o). Os dados referentes ao efeito de CTAB para a hidrólise de DCP , foram analisados quantitativamente utilizando o modelo teórico de Troca-Iônica em micelas (Quina, F.H. e Chaimovich, H. J.Phys.Chem. 83,1844 (1979)). Os resultados desta análise indicam que a constante de velocidade de segunda ordem na fase micelar (km2) é uma ordem de magnitude superior àquela na água (ko2). Esta diferença pode ser reproduzida supondo a reação num ambiente com D= 32 e &#181;=3. A adição de dodecilsulfato de sódio (SDS) acima da CMC, inibe a reação. Contudo, não é observada inibição total, mesmo no caso do DCP o qual é completamente incorporado à fase micelar. Empregando a teoria de Troca-Iônica em soluções micelares, explicitas considerações do produto iônico da água na fase micelar (Kw), conduzem a expressões da dependência de concentração de Na+ aquoso (livre) do pH local na superfície do SDS. Análise quantitativa dos resultados de velocidade de hidrólise dos RCP , fornecem o resultado que Kw = 0,025 Kw (kw é o produto iônico da água na fase aquosa), uma vez suposto km2= 10 ko2. Em soluções micelares de 3-(N,N-dimetil-N-dodecilamônio)- propano-l-sulfonato (SDP), k&#968; de hidrólise do DCP aumenta, a razão k máx/ko&#968;; chega a cerca de 15. Esta aceleração pode ser devida a existência de um campo potencial diplar na superfície da micela de SDP. Como no caso de misturas dioxano-água, a razão de produtos P/A em presença de micelas (CTAB, SDS e SDP) refletem a formação preferencial de P. Esta preferência foi analisada considerando os possíveis estados de transição envolvidos. Finalmente descreve-se uma metodologia simples para determinação rápida da homogeneidade dos detergentes derivados de sais de amônio (distribuição do comprimento de cadeias alquila). Esta técnica é em essência uma eliminação micro-Hoffman, devido a direta injeção do detergente na forma de hidróxido e posterior pirólise no cromatógrafo a gás. Como tal, quantidades negligíveis de detergente são requeridas, como também os passos de isolamento e manipulação (e eventuais erros sistemáticos) associados com a eliminação de Hoffman convencional, seguidos por análise no cromatógrafo a gás, são evitados. / The alkaline hydrolysis of N-alkyl-4-cyano pyridinium ions (RCP) in aqueous solution was characterized with respect to the eftects on pH, ionic strength (&#181;) and medium dieletric constant (D) on the reaction. Alkaline hydrolysis of RCP results in the formation of two products, i.e., the corresponding N-alkyl-4-carboxamidopyridinium ion (A) and N-alKyl-4-pyridone (P). In aqueous solution the P/A product ratio increases with pH, attaining a limiting value of 1,75 at high pH for all the RCP. In water-dioxane mixture, however, there is preferential formation of P. The observed pseudo-first-order rate constant (k&#968; ) for hydrolysis of the RCP in aqueous solution (&#181; =0,02) varies with pH according to: LOG k&#968; = 1,0702 pH - 14,3.The effect of changes in &#181; or D on k&#968; were analysed within the framework of the models of Debye-Huckel (Robinson, R.A. and Stockes, R.H. in \"Electrolyte Solutions\", 1955 ) and Brönsted- Christiansen - Scatchard (Amis, E.S. in \"Solvent Effects on Reaction Rates and Mechanisms\", 1966) . These dependences of k&#968; and of the P/A product ratio on pH, &#181; and D served as a basis for rationalization of the effects of detergents of various structural types on both the rate of alkaline hydrolysis of the RCPand the resultant produc ratio. In Buffered micellar solutions o hexadecyltrimethylammonium bromide (CTAB), k&#968; for alkaline hydrolysis of the N-methyl-4-cyanopyridinium ion (MCP) is independent of detergent concentration. In contrast, k&#968; increases with (CTAB) above the critical micelle concentration (CMC) for the N-Butil (BCP), N-octyl (OCP) and N-dodecyl-4 cyanopyrydinium (DCP) ions. In the case of DCP, the maximum value of k&#968; in the presence of CTAB (k&#968; max) is 200 times greater than k&#968; in the absence of CTAB (ko&#968; ). The effect of CTAB on k&#968; for alkaline hydrolysis of DCP was analyzed quantitatively using the conceptual model for ion exchange (Quina, F.H. and Chaimovich, H. J.Phys.Chem. 83, 1844 (1979)). The results of this analysis indicate that the second order rate constant for hydrolysis in the micellar phase (km2) is an order of magnitude greater than that in the aqueous phase (ko<sub2). This difference betwen km2 and ko2 can be reproduced by assuming a reaction environment with D=32 and &#181; = 3. Micellar sodium dodecyl sulfate (SDS) inhibit the rate of alkaline hydrolysis of all the RCP. Nonetheless, total inhibition is not observed, even in the case of DCP, which is completely incorporated into the micellar phase. Using the theory of ion exchange in micellar solutions, explicitly consideration of the ionic product of water in the micellar phase (Kw) leads to expression for the external (free) N+a dependence of the local pH at the SDS micellar surface. Quantitative analysis of the rate data for the alkaline hydrolysis of the RCP, assuming km2= 10 ko2, furnishes the result that Kw= 0,025 Kw, where Kw is the product of water in the aqueous phase.In micellar solutians of 3-(N,N-dimethyl-N-dodecylammonium) propane-l-sulfanate (SDP), k&#968; for alkalyne Hydrolysisof DCP increases, the ratia k&#968;max/ko&#968; attaining a value of ca. 15. The observed rate acceleration is suggested to be due to the existence of a dipolar potencial field at the SDP micellar surface. As in the case of water-dioxane mixtures, the P/A product ratio in the presence of detergent micelles (CTAB, SDS and SDP) reflects preferential formation of P. This preference was analyzed on the basis of considerations of possible transition states involved. Finally, a simple methodology for rapid determination of the homogeneity (distribution of alkyl chain lengths) of ammonium-derived detergents is described. This technique is in essence a micro Hoffmannelimination effected by direct injection pyrolysis glpc of the detergent in the hydroxide form. As small negligible quantities of detergent are required and the product isolation and manipulation steps and attendant systematic errors) associated with a conventional Hoffmannelimination, followed by glpc analysis of the products are circunve ted.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-17122013-163033
Date24 October 1980
CreatorsMario Jose Politi
ContributorsHernan Chaimovich Guralnik
PublisherUniversidade de São Paulo, Química, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds