Return to search

Existence de connexions homoclines pour l'équation du pont suspendu : une preuve assistée par ordinateur

Tableau d'honneur de la Faculté des études supérieures et postdorales, 2015-2016 / Dans ce mémoire, une méthode assistée numériquement est introduite et utilisée afin de montrer l'existence d'une connexion homocline à zéro pour l'équation du pont suspendu. Cette méthode, basée sur l'utilisation du théorème de contraction de Banach, permet d'obtenir les points fixes de l'opérateur de Newton légèrement modifié. La méthode ainsi que son cadre théorique sont introduits au premier chapitre. L'espace de Banach sur lequel sera définit l'opérateur ainsi que la manière de construire l'approximation de l'inverse utilisée pour l'opérateur sont les éléments majeurs du cadre théorique. Par la suite, la méthode est utilisée dans le Chapitre 2 pour prouver rigoureusement la validité de l'approximation numérique utilisée pour la variété stable locale. Puis cette approximation est réutilisée pour prouver l'existence de la connexion homocline. Cette preuve est à nouveau effectuée en utilisant la méthode introduite au premier chapitre. Finalement, certains résultats des calculs numériques sont présentés pour conclure ce mémoire. / In this work, a numerically assisted technique is introduced in order to prove the existence of a homoclinic connexion to zero for the suspension bridge equation. This technique, based on the use of the Banach fixed point theorem, can provide the fixed point of a slightly modified version of the Newton operator. The technique and its theorical background are introduced in the first chapter. The Banach space on which the operator is defined and the way to construct the approximation of the inverse needed to define the operator are the major parts of the theoretical background. The method is then used to rigorously validate the numerical approximation used to parametrize the local stable manifold. This parametrization is used to find the homoclinic connexion we are looking for. This proof is also completed using the technique from the first chapter. Finally, some results and numerical approximations will be presented in the last chapter.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/26716
Date24 April 2018
CreatorsMurray, Maxime
ContributorsLessard, Jean-Philippe
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xv, 94 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds