Return to search

Development, characterization and experimental validation of metallophthalocyanines based microsensors devoted to monocyclic aromatic hydrocarbon monitoring in air / Développement, caractérisation et validation expérimentale de microsystèmes capteurs de gaz à base de métallophtalocyanines pour le suivi des hydrocarbures aromatiques dans l'air

Résumé indisponible / This PhD work is dedicated to investigate potentialities of phthalocyanines materials to realize a Quartz Crystal Microbalance (QCM) sensor for Benzene, Toluene and Xylenes (BTX) detection in air. The goal is to develop a sensor-microsystem capable of measuring BTX concentrations quantitatively below the environmental guidelines with sufficient accuracy. To achieve these objectives, our strategies mainly focused on experimental works encompassing sensors realization, sensing material characterizations, development of gas-testing facility and sensor testing for different target gases. One of the main aims is to identify most appropriate phthalocyanine material for sensor development. After comparative sensing studies, tert-butyl-copper phthalocyanine based QCM device is found as most sensitive and detail metrological characteristics are further investigated. Results show repeatable, reversible and high magnitude of response, low response and recovery times, sub-ppm range detection limit, high resolutions and combined selectivity of BTX gases among common atmospheric pollutants. Special focus is given to understand the gas/material interactions which are achieved by (a) XRD and SEM characterizations of sensing layers, (b) formalization of a two-step adsorption model and (c) assessing extent of diffusion of target gas in sensing layer. At last, possible ageing of sensor and suitable storage conditions to prevent such effect are investigated.

Identiferoai:union.ndltd.org:theses.fr/2015CLF22635
Date07 December 2015
CreatorsKumar, Abhishek
ContributorsClermont-Ferrand 2, Varenne, Christelle, Brunet, Jérôme
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds