Esta tesis doctoral versa sobre el tratamiento de aguas contaminadas con fármacos sulfamidas como el ácido sulfanílico (SA), la sulfanilamida (SNM) y la sulfametazina (SMZ). Estos compuestos se han degradado en una disolución sintética ácida mediante diversos procesos electroquímicos de oxidación avanzada (EAOPs) tales como la oxidación anódica (AO) en celda dividida y no dividida y los procesos electro-Fenton (EF), fotoelectro-Fenton UVA (PEF) y fotoelectro-Fenton solar (SPEF). En AO se ha usado un ánodo de diamante dopado con boro (BDD) y un cátodo de acero inoxidable en celdas de 100 mL, mientras que en EF, PEF y SPEF se ha utilizado un ánodo de BDD o de Pt y un cátodo de difusión de aire (ADE) o de fieltro de carbón en una celda de 100 o 230 mL. Se ensayó el efecto de variables experimentales como la intensidad de corriente, la concentración del fármaco y del catalizador de Fe2+ y el pH sobre la cinética de mineralización del SA, SNM y SMZ. Los procesos de AO en celda dividida y de PEF operando entre 50 y 450 mA conducían a una mineralización total con una reducción del carbono orgánico total (TOC) superior al 98%. El aumento de la intensidad siempre daba lugar a una mayor velocidad de mineralización debido a la mayor producción de radicales hidroxilo (●OH) vía oxidación del agua en AO, junto a la acción sinérgica del ●OH formado por la reacción de Fenton y de la luz UVA en PEF. También se consiguió una mineralización total para disoluciones concentradas hasta 2530 mg L-1 de SA, 2390 mg L-1 de SNM y 1930 mg L-1 de SMZ, tardando más tiempo aquellas con mayor contenido de sustrato. La cinética de desaparición del sustrato siempre obedecía una reacción de pseudo-primer orden. Se siguió la evolución con el tiempo de electrólisis de la hidroquinona, la p-benzoquinona y los ácidos oxálico y oxámico para el SA, y del catecol, resorcinol, hidroquinona, p-benzoquinona, 1,2,4- trihidroxibenceno y los àcidos maleico, fumárico, acético, oxálico, fórmico y oxámico para la SNM mediante HPLC. Para la SMZ, se detectaron la 4,6-dimetil-2-pirimidinamina, el catecol, el resorcinol, la hidroquinona y la p-benzoquinona por GCMS, y los ácidos maleico, fumárico, acético, fórmico, oxálico y oxámico por HPLC. Se confirmó que el N inicial se convertía principalmente en ion NH4 + y en mucha menor proporción en ion NO3-. A partir de estos resultados, se ha propuesto un camino de reacción plausible para la mineralización de cada compuesto por los EAOPs ensayados. Además, se evaluó la toxicidad de la disolución a partir de la inhibición de la luminiscencia de las bacterias Vibrio fischeri en EF. La toxicidad adquirió su valor máximo a cortos tiempos de electrólisis cuando se producían los productos aromáticos más tóxicos, pero la disolución se desintoxicó totalmente al final del tratamiento, independientemente del ánodo utilizado. En vista de los excelentes resultados encontrados para el PEF, el estudio de la degradación del SA se amplió a una planta pre-piloto solar de 2,5 L como un primer paso de la aplicación del proceso de SPEF a nivel industrial. El reactor era de Pt/ADE y se probó comparativamente el tratamiento de EF para clarificar la acción sinérgica de la luz solar. Ambos procesos se optimizaron mediante la aplicación de un diseño central compuesto acoplado con metodología de superficie de respuesta. Se obtuvo que las variables óptimas eran 100 mA cm-2, 0,5 mM de Fe2+ y pH 4,0. Se encontraron resultados similares para la SNM usando la misma planta pre-piloto. El proceso de SPEF permitió una mineralización del 94%, de forma más rápida a medida que la densidad de corriente aumentaba de 50 a 150 mA cm-2, mientras que las degradaciones comparables por EF dieron menor descontaminación. / This doctoral thesis is devoted to the degradation of sulfanilic acid (SA) and sulfa drugs as sulfanilamide (SNM) and sulfamethazine (SMZ) in acidic aqueous medium using electrochemical advanced oxidation processes (EAOPs) like anodic oxidation (AO) in divided and undivided cells and electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF). AO experiments were made in 100 mL cells with a boron-doped diamond (BDD) anode and a stainless steel cathode, whereas in EF, PEF and SPEF, the cell of 100 or 230 mL was equipped with a BDD or Pt anode and an airdiffusion (ADE) or carbon-felt cathode. The AO process in divided cell and PEF between 50 and 450 mA gave total mineralization with > 98% total organic carbon reduction. Increasing current always accelerated the mineralization due to the higher production of ●OH via wáter oxidation in AO, along with ●OH formed from Fenton’s reaction and UVA action in PEF. Total mineralization was achieved up to 2530 mg L-1 SA, 2390 mg L-1 SNM and 1930 mg L-1 SMZ. The substrate decay always obeyed a pseudo-first-order kinetics. HPLC allowed detecting intermediates like hydroquinone, p-benzoquinone and oxalic and oxamic acids for SA, and catechol, resorcinol, hydroquinone, p-benzoquinone, 1,2,4-trihydroxybenzene and fumaric, maleic, acetic, oxalic and formic acids for SNM. In the case of SMZ, 4,6-dimethyl-2-pyrimidinamine and catechol, resorcinol, hydroquinone and p-benzoquinone were detected by GC-MS and mainly oxalic and oxamic acids by HPLC. The initial N was lost mainly as NH4+ ion and, in lesser proportion, as NO3- ion. These results allowed the proposal of a reaction sequence for each compound by the EAOPs tested. The study of SA degradation was further extended to a solar pre-pilot plant of 2.5 L with a Pt/ADE reactor as a first step of the application of SPEF to industrial level. The EF and SPEF processes were optimized by means of response surface methodology, yielding 100 mA cm-2, 0.5 mM Fe2+ and pH 4.0 as best variables. Similar results were found for SNM using the same pre-pilot plant. The SPEF process allowed 94% mineralization, more rapidly when current density rose from 50 and 150 mA cm-2, while the comparative EF process yielded lower decontamination.
Identifer | oai:union.ndltd.org:TDX_UB/oai:www.tdx.cat:10803/131942 |
Date | 18 December 2013 |
Creators | El Ghenymy, Abdellatif |
Contributors | Brillas, Enric, Rodríguez González, Rosa Ma., Universitat de Barcelona. Departament de Química Física |
Publisher | Universitat de Barcelona |
Source Sets | Universitat de Barcelona |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | 275 p., application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | info:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. |
Page generated in 0.0031 seconds