Return to search

Holographic Description of Curved-Space Quantum Field Theory and Gravity / Holographische Beschreibung von Quantenfeldtheorie auf gekrümmter Raumzeit und Gravitation

The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these tensions is partly in the structure of the geometry with AdS conformal boundary, while another one arises for a particular limiting case where the bulk and boundary descriptions naively disagree. Besides technical challenges, the hierarchy of boundaries for the geometry with AdS conformal boundary offers an interesting option. Namely, having the dual theory on the conformal boundary itself defined on an AdS space offers the logical possibility of implementing a second instance of AdS/CFT. We discuss an appropriate geometric setting allowing for the notion of the boundary of a boundary and identify limitations for such multi-layered dualities. In the second part we consider five-dimensional supergravities whose solutions can be lifted to actual string-theory backgrounds. We work out the asymptotic structure of the theories on asymptotically-AdS spaces and calculate the Weyl anomaly of the dual CFTs. These holographic calculations confirm the expectations from the field-theory side and provide a non-trivial test of the AdS/CFT conjecture. Moreover, building on the previous results we show that in addition to the usual Dirichlet also more general boundary conditions can be imposed. That allows to promote the boundary metric to a dynamical quantity and is expected to yield a holographic description for a conformal supergravity on the boundary. The boundary theory obtained this way exhibits pathologies such as perturbative ghosts, which is in fact expected for a conformal gravity. The fate of these ghosts beyond perturbation theory is an open question and our setting provides a starting point to study it from the string-theory perspective. That discussion leads to a regime where the holographic description of the boundary theory requires quantization of the bulk supergravity. A necessary ingredient of any supergravity is a number of gravitinos as superpartners of the graviton, for which we thus need an effective-QFT description to make sense of AdS/CFT beyond the limit where bulk theory becomes classical. In particular, quantization should be possible not only on rigid AdS, but also on generic asymptotically-AdS spacetimes which may not be Einstein. In the third part we study the quantization and causality properties of the gravitino on Friedmann-Robertson-Walker spacetimes to explicitly show that a consistent quantization can be carried out also on non-Einstein spaces, in contrast to claims in the recent literature. Furthermore, this reveals interesting non-standard effects for the gravitino propagation, which in certain cases is restricted to regions more narrow than the expected light cones. / Die AdS/CFT-Dualitäten ermöglichen einen Zugang zu stark gekoppelten Quantenfeldtheorien (QFT), welche einerseits für die Beschreibung der Natur eine große Rolle spielen, andererseits aber mittels der üblichen mathematischen Methoden schwer zu behandeln sind. Die etablierten Beispiele solcher Dualitäten identifizieren klassische supersymmetrische Gravitationstheorien auf (d+1)-dimensionalen anti-de Sitter Räumen (AdS) mit d-dimensionalen stark gekoppelten konformen Feldtheorien (CFT). Die AdS Raumzeiten besitzen einen zeitartigen konformen Rand, auf dem die duale CFT definiert ist. In diesem Sinn sind die Dualitäten also holographisch, und dieser Zugang hat zu beachtlichen Fortschritten im Verständnis von CFT auf der Minkowski-Raumzeit und dem Einstein-Zylinder geführt. Auf der anderen Seite ist das Verständnis von QFT auf allgemeineren gekrümmten Raumzeiten von besonderem Interesse und nicht-trivial bereits für freie Theorien. Darüber hinaus bleibt das Verständnis von Gravitation als Quantentheorie eines der schwierigsten Probleme in der Physik. Beide Fragestellungen können holographisch betrachtet werden, und wir untersuchen hier Verallgemeinerungen der AdS/CFT-Dualitäten, welche auf der niederdimensionalen Seite QFT auf gekrümmten Räumen und als weitere Verallgemeinerung auch Gravitation beschreiben. Im ersten Teil erweitern wir die holographische Beschreibung von QFT auf festen gekrümmten Raumzeiten, welche sich Gravitationstheorien auf asymptotisch-AdS Räumen mit der entsprechenden Randstruktur bedient. Wir diskutieren Geometrien, deren konformer Rand mit de Sitter oder AdS Raumzeiten identifiziert werden kann, um CFTs auf diesen Räumen holographisch zu beschreiben. Nachdem wir die holographische Renormierung etabliert haben, studieren wir die Unitaritätseigenschaften der CFTs mit Hilfe der dualen bulk-Beschreibung. Die Geometrie mit AdS als Rand zeigt eine Reihe von interessanten Eigenschaften, hauptsächlich da der Rand dieser Geometrie selbst einen Rand hat. Wir untersuchen beide Geometrien und lösen potenzielle Differenzen zwischen den Rand- und bulk-Theorien, welche mit einer Dualität inkompatibel wären. Der Ursprung dieser Differenzen liegt zum einen in der Struktur der Geometrie mit AdS als Rand und rührt zum anderen von einem speziellen Grenzfall, in dem sich die beiden Beschreibungen auf den ersten Blick unterscheiden. Neben technischen Herausforderungen bietet die Hierarchie von Rändern bei der Geometrie mit AdS als Rand eine interessante Option: Mit der dualen CFT wiederum definiert auf einem AdS Raum besteht zumindest prinzipiell die Möglichkeit, eine weitere Instanz von AdS/CFT zu implementieren. Wir diskutieren den passenden geometrischen Rahmen, in dem der Begriff des Randes eines Randes ein wohldefiniertes Konzept ist, und identifizieren Einschränkungen für solche mehrstufige Dualitäten. Im zweiten Teil behandeln wir fünfdimensionale supersymmetrische Gravitationstheorien, deren Lösungen als Stringtheorie-Konfigurationen interpretiert werden können. Wir arbeiten die asymptotische Struktur dieser Theorien auf asymptotisch-AdS Räumen heraus und berechnen die Weyl-Anomalie der dualen CFTs. Diese Rechnungen bestätigen die Erwartungen von der Feldtheorieseite und liefern damit einen nicht-trivialen Test der AdS/CFT-Vermutung. Aufbauend auf diesen Resultaten zeigen wir, dass zusätzlich zu den üblichen Dirichlet- auch allgemeinere Randbedingungen gestellt werden können. Damit wird die Randmetrik zu einer dynamischen Größe und es ergibt sich eine duale Beschreibung für eine konforme Supergravitationstheorie auf dem Rand. Die so erhaltene Randtheorie weist pathologische Eigenschaften wie perturbative Geister auf, was für konforme Gravitationstheorien zu erwarten ist. Die Rolle dieser Geister über die Störungstheorie hinaus ist eine offene Frage und unsere Konstruktion bietet einen Startpunkt, sie von der Stringtheorie-Perspektive zu untersuchen. Dies führt uns in einen Bereich, in dem die holographische Beschreibung der Randtheorie die Quantisierung der bulk-Theorie erfordert. Ein Bestandteil jeder supersymmetrischen Gravitationstheorie ist das Gravitino als Partner des Gravitons, für welches wir daher eine Beschreibung in Form von effektiver QFT benötigen. Insbesondere sollte die Quantisierung auch auf allgemeineren Hintergründen, die nicht notwendig die Einstein-Bedingung erfüllen, möglich sein. Im dritten Teil studieren wir die Quantisierung und Kausalitätseigenschaften des Gravitinos auf Friedmann-Robertson-Walker Raumzeiten. Dabei zeigen wir, dass eine konsistente Quantisierung auch auf Raumzeiten möglich ist, die nicht der Einstein-Bedingung genügen, im Gegensatz zu anderslautenden Schlussfolgerungen in der aktuellen Literatur. Darüber hinaus finden wir interessante Effekte für die Propagation der Gravitinos, welche in bestimmten Fällen auf echte Teilmengen der zu erwartenden Lichtkegel eingeschränkt ist.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:6320
Date January 2012
CreatorsUhlemann, Christoph Frank
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0032 seconds